最近在进一步学习Python,在网上发现有使用opencv进行机读卡识别的,
就根据大神的文章,跟着学习,自己写了一个机读卡识别,
文章一:opencv+python机读卡识别整合版
文章二:python CV 趣味项目 答题卡识别
为了减轻前期的难度,这里本篇文章中我们使用扫描的图片进行识别,
在下一篇文章(进阶版)中,会介绍进阶处理,图片拉伸裁切,边缘处理,四点变化等,
在本篇中我们只介绍图片的预处理,填图位置的识别,图片选择题答案判断输出。
本地使用环境(win10 64位,python3.7)
一、加载图片,将它转换为灰阶,轻度模糊,然后二值化处理。
# 加载图片,将它转换为灰阶,轻度模糊,然后二值化处理。
image = cv2.imread("./image/demo1.jpg")
#转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
#高斯滤波
blurred = cv2.GaussianBlur(gray, (3, 3), 0)
#自适应二值化方法
blurred = cv2.adaptiveThreshold(blurred,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,51,2)
'''
adaptiveThreshold函数:第一个参数src指原图像,原图像应该是灰度图。
第二个参数x指当像素值高于(有时是小于)阈值时应该被赋予的新的像素值
第三个参数adaptive_method 指: CV_ADAPTIVE_THRESH_MEAN_C 或 CV_ADAPTIVE_THRESH_GAUSSIAN_C
第四个参数threshold_type 指取阈值类型:必须是下者之一
• CV_THRESH_BINARY,
• CV_THRESH_BINARY_INV
第五个参数 block_size 指用来计算阈值的象素邻域大小: 3, 5, 7, ...
第六个参数param1 指与方法有关的参数。对方法CV_ADAPTIVE_THRESH_MEAN_C 和 CV_ADAPTIVE_THRESH_GAUSSIAN_C, 它是一个从均值或加权均值提取的常数, 尽管它可以是负数。
'''
二、对选择题图像部分预处理
重新定义图片的大小:5000*7000,便于确定选择题区域与答案。
选择题部分最大的特点是需要将黑块突出,以及过滤掉没填涂的选项,以便确认。
预处理方法选择均值滤波及二进制二值化的方法。
#重塑可能用到的图像
thresh = cv