弹性网络_线性回归(7)—— 弹性网络

本文探讨了使用cv.glmnet进行弹性网络的交叉验证,选取lambda.1se作为最佳参数。通过调整alpha值从0到1,观察其在岭回归和Lasso回归间的转变。实验结果显示,Lasso回归在测试集上的MSE最低,而当alpha=0.8时的弹性网络模型次之,表现出良好的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前有同学问,对于岭回归和Lasso该如何选择呢?岭回归在于 “抑制住回归系数的锋芒,不让系数那么大,但是不会让系数变为0”. 如果在你的数据中每个变量都特别重要,你不想有些变量被剔除,那么岭回归可能比较适合你。Lasso回归在于 “稀疏是这个世界的真相,随着lambda的变大,它会让一些回归系数变为0”。如果你的数据中变量特别多,希望挑选出一些特征变量,那么Lasso回归可能比较适合你。此外,还有一种方法将岭回归和Lasso回归的优势综合了起来——弹性网络。它将L1惩罚与L2惩罚同时引入到目标函数的最小化过程中,在获得稀疏系数的同时,维持了岭回归的正则属性。弹性网络在很多特征互相联系的情况下是非常有用的。Lasso 很可能只随机考虑这些特征中的一个,而弹性网络更倾向于选择两个。在实践中,Lasso 和 Ridge 之间权衡的一个优势是它允许在循环过程中继承 Ridge 的稳定性。弹性网络包含了一个混合参数α,它和lambda同时起作用。α是一个0和1之间的数,lambda和前面一样,用来调节惩罚项的大小。当α=0时,弹性网络等价于岭回归;当α=1时,弹性网络等价于Lasso。如下:

d38462633958639825835e2de22d4098.png

弹性网络的矩阵推导同岭回归,这里就不多说了,有兴趣的自行推导下。我们这里直接来实战演练:
library(ElemStatLearn) #contains the datalibrary(car) #package to calculate Variance Inflation Factorlibrary(glmnet) #allows ridge regression, LASSO and elastic nedata(prostate)str(pro
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值