决策树:一种强大的分类工具
1. 决策树概述
在某些应用场景中,并非所有属性值都能同时获得。例如,在医疗诊断中,医生可能会根据初步的症状逐步安排实验室测试,以逐步缩小可能的诊断范围。因此,我们需要一种分类方法,能够在逐步获取属性值的过程中做出决策。决策树就是这样一种工具,它通过依次选择能提供最多相关信息的属性来进行分类决策。
1.1 决策树的基本结构
决策树由节点和边组成,每个内部节点代表一个属性测试,每个分支代表一个测试结果,每个叶节点代表一个类标签。通过这种方式,决策树能够逐步缩小分类范围,直到最终确定类别。
1.2 决策树的优势
决策树的主要优势在于其 可解释性 。与其他黑箱模型(如贝叶斯和线性分类器)不同,决策树可以通过清晰的规则(如“如果形状=圆形,则选择类别pos”)解释分类结果。此外,决策树不需要所有属性值同时可用,这在属性值难以或昂贵获取的情况下尤为重要。
2. 决策树的构造
2.1 从数据中归纳决策树
构造决策树的过程通常采用递归分割的方法,即每次选择一个属性进行测试,将数据集划分为多个子集,然后对每个子集重复此过程,直到满足某个停止条件(如所有子集中的样本属于同一类)。选择属性的标准通常是基于 信息增益 ,即选择能够最大化减少分类不确定性(熵)的属性。
2.1.1 信息增益的计算
信息增益是衡量一个属性在分类中的重要性的常用指标。具体来说,信息增益定义为划分前后熵的减少量。假设有两个属性A和B,计算信息增益的步骤如下: