大连理工计算机科学与技术学院,张宁-计算机科学与技术学院

该博客介绍了Ning Zhang博士的教育背景,从大连理工大学到新加坡-ETH中心的科研经历,专注于数学规划、机器学习和鲁棒优化。他的工作包括国家自然科学基金项目,以及一系列发表在国际期刊上的成果,如两阶段鲁棒优化的 saddlepoint 方法、Gauss-Seidel分解的proximal ADMM等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

76ea3b7fd5a82f4716406b5604e79699.png

Ning ZHANG,PhD

邮箱:zhangning@dgut.edu.cn

教育背景

2008-2013 大连理工大学 ,数学科学学院,博士

2004-2008 大连理工大学, 应用数学系, 学士

工作经历

2019 - 今 东莞理工学院,计算机科学与技术学院

2018-2019 香港理工大学,应用数学系, 博士后

2015-2018 Singapore-ETH Centre,Future Resilient Systems,博士后

研究方向

数学规划、机器学习、鲁棒优化

基金项目

国家自然科学基金青年科学基金项目,“求解大规模高斯图优化模型有效算法的研究”(11901083),2020.1-2022.12.

论文(2019- )

1.Ning Zhang, Chang Fang*. Saddle point approximation approaches for two-stage robust optimization problems. Journal of Global Optimization(2019): 1-20.

2.Liang Chen, Defeng Sun, Kim-Chuan Toh, Ning Zhang*. A unified algorithmic framework of symmetric Gauss-Seideldecomposition basedproximal ADMMs for convex composite programming.Journal of Computational Mathematics, 37 (2019): 739-757.

3.Jingnan Chen, Gengling Dai,Ning Zhang*. An application of sparse-group Lasso regularization to equity portfolio optimization and sectorselection.Annals of Operations Research.284(2020):243-262.

4.YangjingZhang, Ning Zhang, Defeng Sun*, and Kim-Chuan Toh. An efficient Hessian based algorithm for solving large-scale sparse groupLasso problems.Mathematical Programming, 179 (2020): 223-263.

5.Ning Zhang, Jia Wu*, and Liwei Zhang. A linearly convergent majorized ADMM with indefinite proximal terms for convex compositeprogramming and its applications,Mathematics of Computation.324(2020):1867-1894.

6.Yangjing Zhang,Ning Zhang*, Defeng Sun,Kim Chuan Toh. A proximal point dual Newton algorithm for solving group graphical Lassoproblems,SIAM Journal on Optimization, 2020,30(3): 2197-2220.

内容概要:本文介绍了基于Python实现的SSA-GRU(麻雀搜索算法优化门控循环单元)时间序列预测项目。项目旨在通过结合SSA的全局搜索能力和GRU的时序信息处理能力,提升时间序列预测的精度和效率。文中详细描述了项目的背景、目标、挑战及解决方案,涵盖了从数据预处理到模型训练、优化及评估的全流程。SSA用于优化GRU的超参数,如隐藏层单元数、学习率等,以解决传统方法难以捕捉复杂非线性关系的问题。项目还提供了具体的代码示例,包括GRU模型的定义、训练和验证过程,以及SSA的种群初始化、迭代更新策略和适应度评估函数。; 适合人群:具备一定编程基础,特别是对时间序列预测和深度学习有一定了解的研究人员和技术开发者。; 使用场景及目标:①提高时间序列预测的精度和效率,适用于金融市场分析、气象预报、工业设备故障诊断等领域;②解决传统方法难以捕捉复杂非线性关系的问题;③通过自动化参数优化,减少人工干预,提升模型开发效率;④增强模型在不同数据集和未知环境中的泛化能力。; 阅读建议:由于项目涉及深度学习和智能优化算法的结合,建议读者在阅读过程中结合代码示例进行实践,理解SSA和GRU的工作原理及其在时间序列预测中的具体应用。同时,关注数据预处理、模型训练和优化的每个步骤,以确保对整个流程有全面的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值