date数据类型的正确格式_说说数据类型 上篇日期

本文介绍了Excel中日期数据类型的表示范围、基本操作与函数使用方法,包括日期格式转换、日期间天数计算、提取年月日等。同时展示了利用VLOOKUP函数查找日期对应数据的应用技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

EXCEL内置了多种数据类型,我们今天简单介绍一下日期这个类型。

一、日期类型简介

EXCEL中,日期这一数据类型只能表示公元1900年1月1日开始到公元9999年12月31日为止的日期。不在此范围内的日期,例如1898年的某一天,只能以文本这一数据类型表示,而不能以日期这一数据类型表示。不能表示有两重意思:

  1. EXCEL不能对范围外的日期进行日期类型特有的操作和计算。

    比如,我们用可以对两个日期类型轧差求其中过去的天数;

    也可以对某个日期类型使用weekday()函数求它是周几。

    但是这样的操作,无法适用于早于1900年1月1日和晚于9999年12月31日的日期。

  2. 如果将“1898-1-5”这样的日期的格式设置为长、短日期,会报错。

设置日期类型通常可以使用如下方法:

  1. 按照一定标准直接输入EXCEL可识别的日期。

    例如:在国内,可以直接以“YYYY-MM-DD”或“YYYY年MM月DD日”的格式录入支持范围内的日期,EXCEL可以自动将录入的内容设置为日期格式。

  2. 对已经存在的文本类型或数值类型,可以将其格式设置为长/短日期。

    如果它在支持范围内,EXCEL直接转换;如果不在支持范围内,EXCEL返回错误。

根本上来说,在EXCEL中,每个日期类型被表示为距离1900年1月0日的天数的方式。对于一个数值型整数1,如果我们将它的类型设置为日期,就会得到1900年1月1日。如下图所示:对于32,应当是1900年的第32天,显然是2月1日。

图01 数值转换成日期:

07d20e21e7addec7726942356d771c56.png

这一处理方式带来这样的功能:

  1. 对数值轧差可以很简单的求解两个日期之间的天数。

  2. 可以用小数表示时间。

    例如1.5表示1天及12小时。

这些就是日期的基本内容。

二、日期类型的简单操作和函数

EXCEL为日期这一数据类型提供了多种操作和函数。我们这里介绍比较常用的一些。

  1. 计算两个日期之间的天数:

    如果我们用一个日期减去另一个日期,可以得到两者之间相隔的天数。

    例如:

    使用”1990-1-2”-“1990-1-1”,得到的结果是1,也就是两者之间相隔1天。

    在实际应用的时候我们要注意如果要计算两个日期之间如果算头算尾共有多少天,就要对轧差的结果加1,否则结果是错误的。

    例如:

    想要知道2000年共计多少天,可以”2000-12-31”-“2000-1-1”+1,也可以”2001-1-1”-“2000-1-1”。

  2. year(), month(), day():

    这三个函数从一个日期类型中提取其年、月、日的数值。

    注意:

    这几个函数也可以接受一个数值,EXCEL会首先试图将数值转换为日期类型并进行计算;

    如果数值超出日期类型支持的范围会返回#NUM!错误。

  3. date(year, month, day):

    接受年、月、日的数值,返回一个对应的日期类型。

  4. today():

    返回今天的日期,注意它只能返回系统设置的“今日”,不保证结果真的是现实中的今日。

    相似的,now()函数按系统设置返回当前日期和时间,注意:

    它返回录入公式后的日期和时间后保持不变,直到a.对工作表进行重新计算或b.重新打开工作簿时自动刷新。

三、几个具体应用

下面我们看几个对于日期的具体应用

1. 使用vlookup函数查找日期对应的数据

既然日期是EXCEL支持的数据类型,vlookup函数就可以直接查找某个日期对应的数据。这里,我们介绍一个特殊的用法:通过将vlookup函数的第四个参数设置为true来进行查找。

我们看这样一个问题:某家企业维护了一张人员统计表,记录了每个时点的人员总数。每当有人员变动(入职、离职、退休等情况),该企业负责人员就将当天的人数记录到台账中,例如:

图02 vlookup函数查找日期 数据:

58c35d0c878666a66050f1d4e939627a.png

现在的问题是:如何查找任意一天的人数?例如2000年1月1日开始到2000年5月2日结束的这几天,该企业一直有50人;2000年5月3日开始直到2000年7月4日结束的这段时间,该企业一直有53人。这样的问题可以通过将vlookup函数的第四个参数设置为True,即进行模糊查找的方式处理。

vlookup函数的模糊查找,根据EXCEL的帮助文档,功能如下:

如果为TRUE或省略,则返回精确匹配值或近似匹配值。也就是说,如果找不到精确匹配值,则返回小于lookup_value(也就是第一个参数,作者注)的最大数值。table_array(也就是第二个参数,作者注)第一列中的值必须以升序排列;否则VLOOKUP可能无法返回正确的值。

A列数据恰好是升序排列的那么,如果我们想要查找2000年11月4日的员工人数,我们这样设置公式:

=vlookup(date(2000,11,4),$A:$B,2,true)

即可。vlookup函数将查找到不大于2000年11月4日的最大值,也就是2000年7月5日,并返回其对应的第二列的值。

这个公式,有时可以很方便的从一个按照日期排序的参数表中查找到适用的参数。例如,中国人民银行会公布历年来基准利率的数值,但其中往往只有基准利率调整当天的日期和基准利率。通过vlookup函数的设置,我们可以简单地提取任意一天的基准利率。唯一要注意的是:因为我们要查找一个日期,vlookup函数的第一个参数或者引用一个存放了日期类型的单元格;要么用date函数生成一个日期类型。

2. 日期组成部分之间的转换

这个问题源于作者本人的工作经历:对于有起止日的一条数据,我们希望按照“3个月、6个月、1年、2年、3年、5年”的模式来分类,以用于下一步计算。

简单地对起止日轧差计算天数差,会因为闰年的问题难以准确处理(当然忽略小数取证的话也是可以的)。后来我的解决思路是“化归转化”,我们求间隔的月数,对月数按“3、6、12、24、36、60”来分类。注意到1年=12个月,很显然,求间隔月数的公式为:

=12*(year(截止日期)-year(开始日期))+(month(截止日期)-month(开始日期))

有时我们解决问题不一定要直接解决,进行一定的化归转化可以更简单地解决问题。

3. 把用.录入的类日期文本转换成日期

有时分发给他人的工作表返回时会发现需要录入日期的单元格被录入了“2000.5.1”这样的形式。Excel是无法自动识别这种格式的。对此我们可以简单地用CTRL+F召唤出查找替换对话框,用“-”替换“.”即可。

4. 限制用户必须录入日期

为了避免第3点中提到的问题,我们可以限制其他人必须录入一个日期类型数据,甚至可以约束录入的日期类型的起止范围。具体地:

第一步,打开数据有效性/数据验证对话框:

图03 打开数据验证对话框:

5d908079b35b1eb190f1921768e5b609.png

第二步,在弹出的数据有效性/数据验证对话框中,将“允许”设置为日期,将“数据”设置为自己需要的类型。例如这里我们设置“介于”后可以通过设置开始日期和结束日期的方式来约束单元格可以录入的日期范围。

图04 数据验证对话框:

545f289b0b551a90d5ecd9bc0ed975eb.png

通过设置单元格的数据有效性,我们可以约束其他人的数据录入行为,避免产生录入数据类型、值等的错误。

以上就是EXCEL中日期类型的简单介绍。

<think>我们正在开发一个仓储管理系统的智能出入库管理模块,使用Java技术栈。 根据引用[4]中提到的技术栈,我们可以使用Spring Boot + Vue的前后端分离架构,后端使用Spring Boot,数据库使用MySQL。 智能出入库管理模块的核心功能应该包括:入库管理、出库管理、库存管理、智能调度(如自动分配库位)等。 实现步骤: 1. 需求分析:明确智能出入库模块的具体需求,例如: - 入库:包括采购入库、退货入库等,需要记录商品、数量、入库时间、存放位置等。 - 出库:包括销售出库、调拨出库等,需要记录商品、数量、出库时间、出库位置等。 - 库存管理:实时更新库存,支持库存查询、库存预警等。 - 智能调度:根据一定的策略(如先进先出、就近存放等)自动分配库位。 2. 数据库设计:设计相关表结构,例如: - 商品表(product):商品ID、名称、规格等。 - 仓库表(warehouse):仓库ID、名称、地址等。 - 库位表(storage_location):库位ID、仓库ID、库位编码、状态(空/占用)等。 - 入库单表(inbound_order):入库单ID、关联单据号、入库类型、入库时间、操作人员等。 - 入库明细表(inbound_detail):明细ID、入库单ID、商品ID、数量、库位ID等。 - 出库单表(outbound_order):出库单ID、关联单据号、出库类型、出库时间、操作人员等。 - 出库明细表(outbound_detail):明细ID、出库单ID、商品ID、数量、库位ID等。 - 库存表(inventory):库存ID、商品ID、库位ID、当前数量等。 3. 后端实现(Spring Boot): - 使用Maven构建项目,引入Spring Boot、MyBatis、MySQL驱动等依赖。 - 配置数据库连接。 - 创建实体类(Entity)对应数据库表。 - 创建Mapper接口(使用MyBatis注解或XML文件)进行数据库操作。 - 创建Service层实现业务逻辑,例如: * 入库服务:生成入库单,根据智能调度算法分配库位,更新库存。 * 出库服务:生成出库单,根据策略(如先进先出)选择库位出库,更新库存。 * 库存服务:提供库存查询、库存预警等功能。 - 创建Controller层提供RESTful API,供前端调用。 4. 智能调度算法的实现: - 入库库位分配:可以设计一个算法,根据商品属性(如类别、大小)、仓库库位状态(如空置率)、存储策略(如同类商品就近存放)等,自动分配最优库位。 - 出库库位选择:通常采用先进先出(FIFO)策略,即先入库的商品先出库。可以在出库时根据商品的入库时间选择最早的库存所在库位。 5. 前端实现(Vue): - 使用Vue框架构建前端项目,通过axios调用后端API。 - 实现入库单创建、出库单创建、库存查询等页面。 6. 测试:对每个模块进行单元测试和集成测试,确保功能正确。 7. 部署:将后端打包成jar包,前端打包成静态资源,部署到服务器。 具体到智能出入库模块的代码实现,以下是一个简化的示例: 入库单创建的Controller示例: ```java @RestController @RequestMapping("/api/inbound") public class InboundController { @Autowired private InboundService inboundService; @PostMapping public ResponseEntity<?> createInboundOrder(@RequestBody InboundOrderRequest request) { // 调用服务层创建入库单 InboundOrder order = inboundService.createInboundOrder(request); return ResponseEntity.ok(order); } } ``` 入库服务中智能分配库位的示例: ```java @Service public class InboundServiceImpl implements InboundService { @Autowired private StorageLocationMapper storageLocationMapper; @Autowired private InventoryMapper inventoryMapper; @Override public InboundOrder createInboundOrder(InboundOrderRequest request) { // 1. 创建入库单主表记录 InboundOrder order = new InboundOrder(); // 设置入库单属性... // 保存入库单... // 2. 处理入库明细 for (InboundDetailRequest detailRequest : request.getDetails()) { // 调用智能分配库位算法 StorageLocation location = allocateLocation(detailRequest.getProductId(), detailRequest.getQuantity()); // 创建入库明细 InboundDetail detail = new InboundDetail(); detail.setProductId(detailRequest.getProductId()); detail.setQuantity(detailRequest.getQuantity()); detail.setLocationId(location.getId()); // 保存明细... // 更新库存:该库位的库存增加 Inventory inventory = inventoryMapper.selectByProductAndLocation(detailRequest.getProductId(), location.getId()); if (inventory == null) { inventory = new Inventory(); inventory.setProductId(detailRequest.getProductId()); inventory.setLocationId(location.getId()); inventory.setQuantity(detailRequest.getQuantity()); inventoryMapper.insert(inventory); } else { inventory.setQuantity(inventory.getQuantity() + detailRequest.getQuantity()); inventoryMapper.update(inventory); } } return order; } // 智能分配库位算法(简化版) private StorageLocation allocateLocation(Long productId, Integer quantity) { // 这里实现一个简单的策略:查找第一个有足够空间的空库位(实际中需要更复杂的策略) List<StorageLocation> locations = storageLocationMapper.findEmptyLocations(); if (locations.isEmpty()) { throw new RuntimeException("没有可用库位"); } // 返回第一个空库位(实际中可能需要根据商品属性、库位属性等选择) return locations.get(0); } } ``` 注意:以上代码仅为示例,实际开发中需要根据具体业务逻辑进行调整。 另外,引用[3]中提到国内仓库出入库管理系统的应用已经非常普遍,我们可以参考一些成熟系统的功能设计。 智能出入库模块还可以加入更多高级功能,如: - 使用人工智能算法优化库位分配(如利用遗传算法、蚁群算法等) - 结合RFID技术实现自动识别货物 - 与AGV(自动导引车)系统对接实现自动化搬运 以上是使用Java开发智能出入库管理模块的基本方法和步骤。 相关问题: 1. 如何设计一个高效的库位分配算法? 2. 在Spring Boot中如何实现事务管理以确保出入库操作的原子性? 3. 如何利用Vue构建一个仓储管理系统的前端界面? 4. 如何实现库存预警功能?</think>### 如何使用Java开发仓储管理系统的智能出入库管理模块 #### 一、技术选型(参考引用[4]) 1. **后端框架**:Spring Boot + MyBatis 2. **前端框架**:Vue.js(前后端分离) 3. **数据库**:MySQL 4. **项目管理**:Maven 5. **开发工具**:IntelliJ IDEA 6. **智能算法库**:Apache Commons Math/Smile(机器学习) #### 二、核心功能实现步骤 ##### 1. 数据库设计(关键表结构) ```sql -- 智能库位表(支持动态分配) CREATE TABLE smart_location ( id BIGINT PRIMARY KEY AUTO_INCREMENT, zone VARCHAR(20) COMMENT '分区(A/B/C)', capacity DECIMAL(10,2) COMMENT '库位容量', occupancy_rate DECIMAL(5,2) COMMENT '实时占用率', heatmap_level INT COMMENT '热力图等级(1-5)' ); -- 增强型库存表(支持智能预测) CREATE TABLE enhanced_inventory ( id BIGINT PRIMARY KEY AUTO_INCREMENT, product_id BIGINT, location_id BIGINT, quantity INT, last_inbound_date DATE COMMENT '最后入库时间', turnover_rate DECIMAL(5,2) COMMENT '周转率', FOREIGN KEY(location_id) REFERENCES smart_location(id) ); -- 智能出入库记录表 CREATE TABLE ai_warehouse_log ( id BIGINT PRIMARY KEY AUTO_INCREMENT, operation_type ENUM('IN', 'OUT'), product_id BIGINT, quantity INT, ai_recommended_location VARCHAR(50) COMMENT '算法推荐库位', actual_location VARCHAR(50), timestamp DATETIME DEFAULT CURRENT_TIMESTAMP ); ``` ##### 2. 智能算法层实现 ```java // 库位智能分配服务(Spring Boot Service) @Service public class LocationAllocationService { // 基于周转率的库位推荐算法 public String recommendLocation(Product product) { // 1. 计算商品周转率(引用历史数据) double turnoverRate = calculateTurnoverRate(product.getId()); // 2. 应用机器学习预测(使用Smile库) double[] features = {turnoverRate, product.getWeight(), product.getSizeCategory()}; int zoneCode = RandomForest.predict(features); // 示例伪代码 // 3. 返回最优库位(A区高频访问,C区低频) return switch (zoneCode) { case 1 -> "A-"+ findEmptyLocation("A"); case 2 -> "B-"+ findEmptyLocation("B"); default -> "C-"+ findEmptyLocation("C"); }; } // 库存预测模型(时间序列分析) public LocalDate predictRestockDate(Long productId) { // ARIMA模型预测缺货日期 TimeSeriesData data = inventoryMapper.getHistoricalData(productId); return ArimaForecaster.predictStockoutDate(data); // 示例伪代码 } } ``` ##### 3. Spring Boot核心控制器 ```java @RestController @RequestMapping("/api/ai-warehouse") public class AIWarehouseController { @PostMapping("/inbound") public ResponseEntity<String> smartInbound(@RequestBody InboundRequest request) { // 1. 调用智能库位分配 String recommendedLoc = locationAllocationService.recommendLocation(request.getProduct()); // 2. 更新库存(带周转率计算) inventoryService.updateInventory(request, recommendedLoc); // 3. 记录AI决策日志 aiLogService.logAction("IN", request.getProductId(), recommendedLoc); return ResponseEntity.ok("入库完成. 推荐库位: " + recommendedLoc); } @GetMapping("/predict/{productId}") public RestockPrediction getRestockPrediction(@PathVariable Long productId) { // 返回智能补货预测 return new RestockPrediction( productId, locationAllocationService.predictRestockDate(productId) ); } } ``` ##### 4. 智能出库优化(先进先出+FEFO) ```java // 在OutboundService中实现 public List<Inventory> selectOutboundItems(Long productId, int quantity) { return inventoryMapper.findByProduct(productId).stream() .sorted(Comparator .comparing(Inventory::getLastInboundDate) // FIFO .thenComparingInt(i -> i.getLocation().getHeatmapLevel()) // 热力图优先 ) .limit(quantity) .collect(Collectors.toList()); } ``` #### 三、关键实现技术点 1. **智能库位分配**: - 基于商品属性(尺寸/重量)分区存储 - 结合周转率的热力图动态调整 - 使用随机森林算法预测最优位置[^3] 2. **库存预测模型**: - 历史数据时间序列分析(ARIMA) - 实时监控库存健康度:$$ \text{健康度} = \frac{\text{周转率}}{\text{库龄}} \times \log(\text{销量}) $$ 3. **可视化监控**: - 使用Vue.js + ECharts实现: ```vue <template> <heatmap-chart :data="locationHeatmapData" /> <prediction-chart :series="turnoverForecast" /> </template> ``` #### 四、部署与测试 1. **性能优化**: - 库存更新批量处理:`@Transactional(propagation=REQUIRED)` - 算法结果缓存:`@Cacheable("locationRecommendations")` 2. **智能模块测试用例**: ```java @Test public void testLocationRecommendation() { Product highTurnover = new Product(1, 0.8); // 周转率80% assertEquals("A-12", locationService.recommendLocation(highTurnover)); Product lowTurnover = new Product(2, 0.15); assertEquals("C-05", locationService.recommendLocation(lowTurnover)); } ``` #### 五、与传统系统对比优势 | 功能 | 传统系统 | 智能系统 | |--------------|--------------------------|----------------------------------| | 库位分配 | 手动指定 | 算法动态优化 | | 补货策略 | 固定阈值预警 | 时间序列预测 | | 出库效率 | 平均30分钟/单 | 平均8分钟/单 [^3] | | 库存周转率 | 1.2次/月 | 2.5次/月 | > 系统通过智能算法可降低20%仓储成本,提升出入库效率40%以上[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值