关键词提取_如何使用程序自动化提取关键词呢?

本文介绍了如何利用TF-IDF算法自动从文章中提取关键词。TF-IDF是一种常见的文本分析技术,它降低了常用词语的权重,提升了不常见词语的重要性。通过计算词频、逆文档频率,可以得到每个词的TF-IDF权重,从而筛选出文章的关键信息。该方法有助于提高关键词提取的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

563668552f2bf8fa4e6c4f34370936fc.png

场景需求

有一篇文章,不在人工干预下,自动提取关键词。

基本理论

文章的关键词,最初的方法多是使用词语出现的频次(Term Frequency,缩写为TF)作为衡量的标准,但在实际应用过程中会出现一些无关紧要的关键词,如“我、你、他们”,“的”,“是”。

虽然这些毫无意义的助词、代词可以通过停用词来过滤掉,仍然会有一些有意义但不是关键词的干扰词语。那么有没有一种规则可以降低一些非常通用且常见词语的权值,而增加不那么常见词语的权值呢?

因此人们提出了新的规则,逆文档频率(Inverse Document Frequency,缩写为IDF),IDF可以降低一些非常通用且常见词语的权值,而增加不那么常见词语的权值。下面将就如何在一篇文章自动提取关键词做一个项目框架流程图。

思路流程图

662e699f2812c67c6396871cf7d16e5a.png

图 1:自动提取关键词原理图

计算公式

(1) 计算词频

36ece6038a6b20e2942e1737acd939c0.png

(2) 计算逆文档频率

9559db86683c6594829621c4c49707c2.png

(3) 计算tfidf权重

52603ad4344916ce541c372d85de0a02.png
欢迎各位读者朋友们留言一起探讨学习!觉得文章对你有帮助,记得点赞、关注、转发喔!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值