matlab mnist 代码,MNIST手写数字识别【Matlab神经网络工具箱】

本文介绍了一种使用Matlab神经网络工具箱进行MNIST手写数字识别的方法。通过预处理手写数字图像并利用神经网络进行训练和识别,实现了对手写数字的有效识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MNIST手写数字识别【Matlab神经网络工具箱】

发布时间:2018-05-18 23:51,

浏览次数:992

, 标签:

MNIST

Matlab

MNIST手写数字识别

Matlab代码:

%Neural Networks Codes will be run on this part tic

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clc

clear all pic1=imread('8.png'); pic1=rgb2gray(pic1); % pic=255-pic;

[a,b]=size(pic1); for i=1:1:a for j=1:1:b if pic1(i,j)==0 up=i; break end end

end for i=a:-1:1 for j=1:1:b if pic1(i,j)==0 down=i; break end end end for

j=1:1:b for i=1:1:a if pic1(i,j)==0 left=j; break end end end for j=b:-1:1 for

i=1:1:a if pic1(i,j)==0 right=j; break end end end

pic=pic1(down:up,right:left); imshow(pic) pic=imresize(pic,[28 28]); %

size(pic); pic1=1-double(reshape(pic,784,1))/255;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%加载待识别图像 image =

loadMNISTImages('train-images'); % 加载样本图像共60000,size(image)=784*60000 label =

loadMNISTLabels('train-labels');%加载样本图像对应标签

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

label1=zeros(60000,10); j=0; for i=1:1:60000     j=label(i)+1;

label1(i,j)=1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%=训练样本

PR=minmax(image); bpnet=newff(PR,[30 10],{'tansig', 'tansig'}, 'traingd',

'learngdm'); net.epoch=100; net.trainParam.epochs=10;%允许最大训练步数

net.trainParam.goal=0.001; %训练目标最小误差0.001 net.trainParam.show=1;

%每间隔100步显示一次训练结果 net.trainParam.lr=0.01; %学习速率

bpnet=train(bpnet,image,label1'); bpnet=sim(bpnet,pic1);

shuzi=find(bpnet==max(bpnet))-1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% toc

利用自己在写字板上写的字测试:

如果不会下载MNIST 数据,可以访问:我的GitHub:

https://github.com/WeisongZhao/MNIST_Recognization

里面有不使用MATLAB工具箱的源代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值