生成对抗网络(GAN)和编码解码网络(VAE)是两种不同的深度学习模型,它们在结构和训练方式上有很大的差别。
GAN 由两部分组成: 生成器和判别器。生成器的作用是根据输入的随机噪声生成图像,而判别器的作用是对输入图像进行真假判断。两个网络相互对抗,在训练过程中互相优化.
VAE 由一个编码器和一个解码器组成。编码器的作用是将输入图像编码成低维的表示,而解码器的作用是根据编码器得到的表示重建图像。相对来说,VAE更注重于对输入数据的重建,而GAN更注重生成新数据.
生成对抗网络(GAN)和编码解码网络(VAE)是两种不同的深度学习模型,它们在结构和训练方式上有很大的差别。
GAN 由两部分组成: 生成器和判别器。生成器的作用是根据输入的随机噪声生成图像,而判别器的作用是对输入图像进行真假判断。两个网络相互对抗,在训练过程中互相优化.
VAE 由一个编码器和一个解码器组成。编码器的作用是将输入图像编码成低维的表示,而解码器的作用是根据编码器得到的表示重建图像。相对来说,VAE更注重于对输入数据的重建,而GAN更注重生成新数据.