生成对抗网络与编码解码网络的区别

GAN由生成器和判别器构成,两者在训练中互相博弈以生成逼真图像;而VAE使用编码器和解码器,侧重于输入数据的重构。GAN专注于生成新数据,VAE则更关注数据表示学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

生成对抗网络(GAN)和编码解码网络(VAE)是两种不同的深度学习模型,它们在结构和训练方式上有很大的差别。

GAN 由两部分组成: 生成器和判别器。生成器的作用是根据输入的随机噪声生成图像,而判别器的作用是对输入图像进行真假判断。两个网络相互对抗,在训练过程中互相优化.

VAE 由一个编码器和一个解码器组成。编码器的作用是将输入图像编码成低维的表示,而解码器的作用是根据编码器得到的表示重建图像。相对来说,VAE更注重于对输入数据的重建,而GAN更注重生成新数据.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值