matlab编程 逐步搜索法,在区间[0,5]内找出非线性方程f (x )= x^2+2x -10的正根的大概位置。...

逐步搜索法是求解非线性方程的简单方法,该文通过Matlab示例代码展示如何在区间[0,5]内找到方程x^2+2x-10的正根近似位置。虽然不能得到精确解,但能有效缩小解的范围。" 94386586,8589448,编译原理详解:从概念到实践,"['编译原理', '语言翻译', '代码优化', '自动机', '形式语言']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逐步搜索法是一种简单的解决非线性方程的方法,它可以在给定的区间内逐步缩小解的范围,从而找到方程的正根。

下面是在 Matlab 中使用逐步搜索法求解非线性方程的示例代码:

% 定义方程
f= @(x) x^2 - 2*x - 10;

% 设置搜索区间
a = 0;
b = 5;

% 设置搜索步长
step = 0.1;

% 逐步搜索
for x = a:step:b
    if f(x) * f(x + step) < 0
        % 如果在当前区间内存在正根,则输出区间范围
        fprintf('正根在区间[%f, %f]内\n', x, x+step);
    end
end

运行上面的代码后,程序会输出非线性方程在区间 [0,5] 内的正根的大概位置。

注意:逐步搜索法不能求出正根的精确值,只能给出正根的大概位置。如果要求出正根的精确值,可以使用其他方法,例如牛顿迭代法或二分法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值