怎样获得用SequentialFeatureSelector变量选择后的得分

SequentialFeatureSelector是用于特征选择的工具,通过k_score_属性可以获取不同数量特征的得分。最佳特征集合的得分可通过访问sfs.k_score_[sfs.k_feature_idx_]得到,前提是已训练并调用fit方法。k_feature_idx_存储最优特征的索引。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要获得用 SequentialFeatureSelector 进行变量选择后的得分,你可以使用 k_score_ 属性。这是一个字典,其中包含了不同数量的特征所对应的得分。例如,如果你使用了 fit 方法训练了 SequentialFeatureSelector,你可以使用以下代码来访问最优特征集合的得分:

best_score = sfs.k_score_[sfs.k_feature_idx_]

其中,sfs 是你训练的 SequentialFeatureSelector 对象。

注意,这里假设你已经使用了 fit 方法训练了 SequentialFeatureSelector,并且已经调用了 k_feature_idx_ 属性,该属性保存了最优特征集合的索引。

希望这能帮到你!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值