数据结构面试大全:算法实战解析

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:数据结构是编程和算法面试中的重要环节,本资源库旨在为面试者提供全面的数据结构知识,包括数组、链表、栈、队列、树、图、散列表、排序和查找算法、动态规划、递归与回溯等主题。通过分析真实面试题目和解题技巧,帮助面试者在面试中展现出扎实的基础和高效的解题能力。
数据结构面试大全 面试 算法

1. 数组基础与面试题目

数组是编程中最基本的数据结构之一,它以连续的内存空间存储相同类型的数据元素。无论在算法设计还是实际开发中,数组都扮演着重要的角色。掌握数组的使用,对于解决各类编程问题至关重要。

1.1 数组的概念及操作

数组可以看作是相同类型变量的有序集合。在大多数编程语言中,数组有固定大小,定义数组时需指定元素数量和类型。例如,在Java中,定义一个整型数组如下:

int[] array = new int[10];

数组支持基本操作,包括访问元素、遍历和修改元素值。访问元素非常简单,通过索引直接访问,需要注意的是索引从0开始。

1.2 面试中的数组题目

在技术面试中,数组相关的题目非常常见,这些问题主要考察应聘者对数组的理解以及编程解决问题的能力。如求数组中元素的最大值、最小值,数组元素的重新排列,或者找出两个数组的交集等。

以查找数组中是否存在重复元素为例,可以使用集合的特性来快速判断,也可以通过排序后遍历数组来实现。面试时,面试官通常会关注你的解题思路以及对时间空间复杂度的考虑。

例如,在Java中,可以使用以下代码来判断一个数组是否有重复元素:

public boolean hasDuplicate(int[] array) {
    Set<Integer> set = new HashSet<>();
    for (int num : array) {
        if (set.contains(num)) {
            return true;
        }
        set.add(num);
    }
    return false;
}

通过这个例子,我们可以看到,对于数组这类基础数据结构,面试者不仅需要掌握其基本操作,还要具备将问题转化成编程语言表达出来的能力。因此,数组问题常作为面试的开场题目,以此来探测候选人的编码水平和问题解决能力。

2. 链表操作和题目考察

2.1 链表的概念和类型

2.1.1 单链表的结构与实现

链表是一种基本的数据结构,它由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。单链表是链表的一种最简单的形式,其中每个节点只包含一个指针,该指针指向链表中的下一个节点。最后一个节点的指针指向NULL,表示链表的结束。

在编程中,通常我们可以使用结构体或类来定义链表的节点。以下是一个使用C语言实现的单链表节点结构体和基本操作的示例代码:

#include <stdio.h>
#include <stdlib.h>

// 定义链表节点结构体
typedef struct Node {
    int data;           // 数据域
    struct Node* next;  // 指针域,指向下一个节点
} Node;

// 创建链表节点
Node* createNode(int data) {
    Node* newNode = (Node*)malloc(sizeof(Node)); // 动态分配内存
    if (newNode == NULL) {
        exit(-1); // 分配失败,退出程序
    }
    newNode->data = data; // 设置数据域的值
    newNode->next = NULL; // 指针域初始化为NULL
    return newNode;
}

// 插入节点到链表尾部
void insertNode(Node** head, int data) {
    Node* newNode = createNode(data);
    if (*head == NULL) {
        *head = newNode; // 如果链表为空,新节点即为头节点
    } else {
        Node* current = *head;
        while (current->next != NULL) {
            current = current->next; // 遍历到链表末尾
        }
        current->next = newNode; // 将新节点插入链表尾部
    }
}

// 打印链表
void printList(Node* head) {
    Node* current = head;
    while (current != NULL) {
        printf("%d -> ", current->data);
        current = current->next;
    }
    printf("NULL\n");
}

// 释放链表内存
void freeList(Node* head) {
    Node* current = head;
    while (current != NULL) {
        Node* next = current->next;
        free(current);
        current = next;
    }
}

int main() {
    Node* head = NULL; // 初始化链表头指针为NULL
    insertNode(&head, 1); // 插入数据为1的节点
    insertNode(&head, 2);
    insertNode(&head, 3);
    printList(head); // 打印链表
    freeList(head);  // 释放链表内存
    return 0;
}

该代码段首先定义了一个节点结构体,然后通过 createNode 函数创建新节点。 insertNode 函数将新节点插入链表尾部, printList 函数用于打印链表中所有节点的数据,而 freeList 函数则负责释放链表占用的内存。

2.1.2 双向链表与循环链表的特点

双向链表是一种每个节点拥有两个指针的链表,一个指向前一个节点,一个指向后一个节点。这意味着双向链表不仅可以快速访问下一个节点,还能快速访问前一个节点,为某些操作提供了便利。

循环链表是一种特殊类型的链表,它的最后一个节点指向链表的第一个节点,形成一个环。这样的结构使得在循环链表中,没有真正的开始或结束节点。

双向循环链表结合了双向链表和循环链表的特点,即每个节点都包含两个指针,同时链表形成一个环。这种数据结构在实现某些算法时提供了高效的遍历性能。

2.2 链表的经典面试题目

2.2.1 链表反转问题

链表反转是面试中常见的链表操作题目,目的是将链表中所有节点的指向逆转,原本指向下一个节点的指针现在指向前一个节点。面试官可能会要求实现这个功能,并讨论时间复杂度和空间复杂度。

Node* reverseList(Node* head) {
    Node* prev = NULL;
    Node* current = head;
    Node* next = NULL;
    while (current != NULL) {
        next = current->next; // 保存下一个节点
        current->next = prev; // 反转当前节点的指针
        prev = current;       // 移动prev到当前节点
        current = next;       // 移动current到下一个节点
    }
    return prev; // 新的头节点是prev
}

2.2.2 链表环检测问题

在链表中检测环是一个经典问题,通常使用“快慢指针”方法。一个指针一次移动一个节点,另一个指针一次移动两个节点。如果存在环,那么两个指针最终会相遇。

int hasCycle(Node* head) {
    Node *slow = head, *fast = head;
    while (fast && fast->next) {
        slow = slow->next;
        fast = fast->next->next;
        if (slow == fast) {
            return 1; // 发现环
        }
    }
    return 0; // 无环
}

2.2.3 合并K个排序链表问题

合并K个排序链表是将多个已经排序的链表合并成一个新的完全排序链表的题目。这通常可以使用优先队列(最小堆)来完成,但也有其他更高效的算法。

// 伪代码展示合并过程
Node* mergeKLists(std::vector<Node*>& lists) {
    // 创建一个最小堆,存储节点值和对应的链表节点
    MinHeap heap;
    for (Node* list : lists) {
        if (list) heap.push({list->data, list});
    }

    Node dummy(0), *tail = &dummy;
    while (!heap.isEmpty()) {
        Node* node = heap.pop();
        tail->next = node;
        tail = node;
        if (node->next) {
            heap.push({node->next->data, node->next});
        }
    }
    return dummy.next;
}

这些链表问题都是面试中的热点,其核心不仅在于考察对链表结构的理解和编程能力,还在于测试应聘者解决问题的逻辑思维能力,以及对数据结构相关算法的掌握程度。

3. 栈和队列的基本原理和应用

3.1 栈和队列的定义与特性

3.1.1 栈的后进先出(LIFO)特性

栈是一种后进先出(Last-In-First-Out,LIFO)的数据结构,它只允许在栈的一端进行插入和删除操作。在栈中,新添加的元素必须放在栈顶,删除元素时也仅能从栈顶移除。这种特定的操作方式使得栈非常适合解决需要逆序处理元素的问题。

例如,一个典型的栈应用是浏览器的后退功能。当你访问过一系列页面后,浏览器的后退功能会使用栈的原理来保存你访问过的页面,从而让你可以逆序回到前面的页面。

栈的使用示例代码:
stack = []

# 入栈操作
stack.append(1)
stack.append(2)
stack.append(3)

# 出栈操作
top_element = stack.pop()  # 返回3,栈顶元素

# 出栈操作直到栈为空
while stack:
    top_element = stack.pop()
    print(top_element)

3.1.2 队列的先进先出(FIFO)特性

队列是一种先进先出(First-In-First-Out,FIFO)的数据结构,它允许在队列的一端添加元素,在另一端移除元素。队列的这一特性使其成为模拟排队系统和缓冲处理的理想选择。

例如,在操作系统中,进程调度经常使用队列来实现。新到达的进程被放入就绪队列,CPU按照队列的顺序依次处理进程。

队列的使用示例代码:
from collections import deque

queue = deque()

# 入队操作
queue.append(1)
queue.append(2)
queue.append(3)

# 出队操作
front_element = queue.popleft()  # 返回1,队首元素

# 出队操作直到队列为空
while queue:
    front_element = queue.popleft()
    print(front_element)

3.2 栈和队列在算法中的应用

3.2.1 栈在表达式求值中的应用

表达式求值是一个经典的问题,它可以通过栈来实现。特别是在处理包含括号的算术表达式时,栈提供了一种简洁的方法来确保括号匹配和运算符的正确优先级。

算法步骤:
1. 遍历表达式中的每个字符。
2. 遇到数字时,将其压入操作数栈。
3. 遇到操作符时:
a. 如果操作符栈为空,或当前操作符优先级高于栈顶操作符,直接入栈。
b. 否则,弹出操作符栈顶操作符,并执行计算,结果压入操作数栈,重复此步骤直到当前操作符可以入栈。
4. 表达式遍历完毕后,弹出并计算剩余的操作符,直到栈空。

表达式求值代码示例:
def evaluate_expression(expression):
    # 操作数栈和操作符栈
    operands = []
    operators = []
    precedence = {'+': 1, '-': 1, '*': 2, '/': 2}
    def apply_operator(operators, operands):
        right = operands.pop()
        left = operands.pop()
        operator = operators.pop()
        if operator == '+':
            operands.append(left + right)
        elif operator == '-':
            operands.append(left - right)
        elif operator == '*':
            operands.append(left * right)
        elif operator == '/':
            operands.append(left / right)
    for char in expression:
        if char.isdigit():
            operands.append(int(char))
        elif char == '(':
            operators.append(char)
        elif char == ')':
            while operators and operators[-1] != '(':
                apply_operator(operators, operands)
            operators.pop()  # Pop the '('
        else:
            while operators and operators[-1] in precedence and precedence[char] <= precedence[operators[-1]]:
                apply_operator(operators, operands)
            operators.append(char)
    while operators:
        apply_operator(operators, operands)
    return operands[0]

# 示例使用
expression = '3*(4+5)'
print(evaluate_expression(expression))  # 输出 27

3.2.2 队列在广度优先搜索中的应用

广度优先搜索(BFS)是一种用于图或树的遍历算法,它从一个起始节点开始,逐层扩展访问邻居节点。队列的FIFO特性非常适合于BFS中的节点访问顺序。

BFS算法步骤:
1. 创建一个队列,将起始节点加入队列。
2. 当队列非空时循环执行以下步骤:
a. 从队列中取出一个节点。
b. 访问该节点,并将其未访问的邻居节点加入队列。

BFS算法的代码示例:
from collections import deque

def bfs(graph, start):
    visited = set()
    queue = deque([start])

    while queue:
        vertex = queue.popleft()
        if vertex not in visited:
            visited.add(vertex)
            queue.extend(set(graph[vertex]) - visited)

# 示例使用
graph = {
    'A': ['B', 'C'],
    'B': ['D', 'E'],
    'C': ['F'],
    'D': [],
    'E': ['F'],
    'F': []
}
bfs(graph, 'A')

3.2.3 使用栈和队列解决实际问题

栈和队列不仅在理论计算机科学中有广泛应用,它们在现实世界问题的解决中也扮演着关键角色。比如在网络流量的调度中,队列就发挥着重要作用,而程序的调用栈是实现函数调用和变量作用域管理不可或缺的机制。

以邮件客户端的收件箱为例,我们通常希望新收到的邮件能够立即显示出来,而阅读过的邮件可以移至历史邮件箱。这一需求可以用一个队列来实现。新邮件被加入到队列的末尾,而用户的阅读行为则从队列的头部取得邮件。这个过程很好地展示了队列在处理数据时的“先进先出”原则。

而栈的一个实际应用是在编辑器中的撤销和重做功能。每次编辑操作后,用户的动作会被压入一个栈中。当用户选择撤销操作时,最后一个动作被从栈中弹出并执行逆向操作。这个过程遵循了栈的“后进先出”原则。

邮件客户端队列使用示例代码:
# 这是一个概念性的代码片段,并非完整程序。
class Inbox:
    def __init__(self):
        self.new_mail_queue = deque()
        self.read_mail_queue = deque()
    def receive_mail(self, mail):
        self.new_mail_queue.append(mail)
    def read_mail(self):
        if not self.new_mail_queue:
            print("没有新邮件!")
        else:
            latest_mail = self.new_mail_queue.popleft()
            self.read_mail_queue.append(latest_mail)
            return latest_mail

    def go_back_to_mail(self):
        if not self.read_mail_queue:
            print("没有已读邮件!")
        else:
            self.new_mail_queue.append(self.read_mail_queue.pop())

在本章节中,我们深入探讨了栈和队列的基本原理和特性,并通过实际的例子展示了它们在算法应用中的重要角色。栈和队列的使用不仅限于上述示例,它们广泛存在于各种编程问题和现实世界的应用之中。理解它们的工作原理和应用场景对于任何希望在IT领域取得深入发展的开发者来说都至关重要。

4. 树的遍历和性质分析

4.1 二叉树的遍历方法

4.1.1 前序、中序和后序遍历

二叉树的遍历是数据结构中一项基础而重要的技能。通过不同的遍历方法,我们可以按照特定的顺序访问二叉树中的每个节点,从而达到不同的目的。其中最常见的是前序遍历、中序遍历和后序遍历。

前序遍历(Pre-order Traversal) :首先访问根节点,然后递归地进行前序遍历左子树,接着递归地进行前序遍历右子树。前序遍历的特点是“根-左-右”的顺序。

中序遍历(In-order Traversal) :首先递归地进行中序遍历左子树,然后访问根节点,最后递归地进行中序遍历右子树。中序遍历的特点是“左-根-右”的顺序。对于二叉搜索树,中序遍历可以按照递增的顺序访问所有节点。

后序遍历(Post-order Traversal) :首先递归地进行后序遍历左子树,接着递归地进行后序遍历右子树,最后访问根节点。后序遍历的特点是“左-右-根”的顺序。

下面是一个简单的前序遍历的Python代码实现:

class TreeNode:
    def __init__(self, value=0, left=None, right=None):
        self.val = value
        self.left = left
        self.right = right

def preorderTraversal(root):
    result = []
    def preorder(node):
        if not node:
            return
        result.append(node.val)
        preorder(node.left)
        preorder(node.right)
    preorder(root)
    return result

# 示例使用
root = TreeNode(1)
root.right = TreeNode(2)
root.right.left = TreeNode(3)
print(preorderTraversal(root))  # 输出: [1, 2, 3]

在这段代码中, preorderTraversal 函数通过一个内部的辅助函数 preorder 来实现递归前序遍历。从根节点开始,先访问根节点,然后递归地对左子树进行前序遍历,最后对右子树进行前序遍历。

4.1.2 层序遍历

层序遍历(Level-order Traversal) :按照树的层次从上到下,从左到右的方式访问每个节点。层序遍历通常借助于队列(queue)来实现。在遍历的过程中,先访问根节点,然后根节点出队,并将其非空左右子节点依次入队。此过程持续进行,直到队列为空。

from collections import deque

def levelOrderTraversal(root):
    if not root:
        return []
    result = []
    queue = deque([root])
    while queue:
        level_size = len(queue)
        current_level = []
        for _ in range(level_size):
            node = queue.popleft()
            current_level.append(node.val)
            if node.left:
                queue.append(node.left)
            if node.right:
                queue.append(node.right)
        result.append(current_level)
    return result

# 示例使用
root = TreeNode(1)
root.left = TreeNode(2)
root.right = TreeNode(3)
root.left.left = TreeNode(4)
root.left.right = TreeNode(5)
print(levelOrderTraversal(root))  # 输出: [[1], [2, 3], [4, 5]]

在上述代码中, levelOrderTraversal 函数使用了一个队列来按层次遍历树。首先,根节点入队,然后进入一个循环,在循环中每次处理一层的所有节点。通过记录当前层的节点数量 level_size ,可以确保每次循环只处理当前层的节点,并且在循环结束后将当前层的值添加到结果列表中。这个过程重复进行,直到队列为空,所有节点都已访问。

4.2 二叉树的性质与应用

4.2.1 二叉搜索树的特性

二叉搜索树(Binary Search Tree,BST),也称为二叉查找树或有序二叉树,是一种特殊的二叉树。其节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数,左右子树也必须分别为二叉搜索树。

二叉搜索树的一个重要特性是中序遍历可以得到有序序列。这是因为在中序遍历的过程中,节点是按照左子树 -> 根节点 -> 右子树的顺序被访问的,这恰好符合二叉搜索树中节点值的有序排列。因此,二叉搜索树可以快速实现查找、插入和删除等操作,并且这些操作的时间复杂度都为 O(log n)(在理想情况下,即树是平衡的情况下)。

4.2.2 平衡二叉树(AVL树)和红黑树

为了保持二叉搜索树的效率,平衡二叉树应运而生。其中,AVL树和红黑树是最常用的平衡二叉搜索树。

AVL树 是一种高度平衡的二叉搜索树,任意节点的两个子树的高度最大差别为一,这保证了树的平衡性。由于高度平衡,AVL树在进行查找操作时可以保持较好的效率,但当数据更新时需要通过旋转来维护平衡,这会增加插入和删除操作的复杂性。

红黑树 也是一种自平衡的二叉搜索树,但它与AVL树不同的是,它在保持树大致平衡的同时放宽了平衡条件,从而在插入和删除操作时,需要进行较少的旋转操作。红黑树确保从任一节点到其每个叶子节点的所有路径上包含相同数量的黑色节点,这使得红黑树在维持树平衡的同时,能够提供较为平均的查找、插入和删除性能。

4.3 树和图的其他结构

4.3.1 B树和B+树的应用场景

B树和B+树是为磁盘或其他直接存取辅助存储设备而设计的一种平衡查找树。它们通过将数据存储在磁盘块中,并且这些块可以一次性读取,大大提高了数据检索的效率。B树和B+树广泛应用于文件系统及数据库系统的索引结构。

B树 每个节点可以包含多个键值和对应的数据记录,节点的键值用于指导搜索方向。B树在删除节点时需要特别注意维持其性质,尤其是在节点的键值数目小于最小值时需要进行合并或调整。

B+树 是B树的一个变种,其所有的数据记录都位于叶子节点,内节点仅用于索引。这样的结构使得B+树在磁盘读取操作中更加高效,因为访问的是有序的叶子节点,并且数据记录顺序和叶子节点顺序一致,利于范围查询。

4.3.2 并查集的概念和应用

并查集 是一种数据结构,用于处理一些不相交集合的合并及查询问题。它的主要操作有:

  • MakeSet(x) :创建一个新的单元素集合 {x}。
  • Find(x) :确定元素 x 属于哪个子集。这可以用来确定两个元素是否处于同一个子集中。
  • Union(x, y) :将两个子集合并成一个集合。

并查集结构通常用在图论中的连通性问题、网络连接问题以及一些组合数学问题中。为了高效地处理这些操作,通常需要使用一种称为“路径压缩”的技术,以保证树的高度尽可能小。

在实际应用中,并查集通常用数组来表示,其中数组的每个索引对应一个元素,索引的值表示其父节点的索引。通过这种方式,我们可以在O(1)时间内完成查找操作(假设路径压缩技术已经被使用)。合并操作则可以确保在对数时间复杂度内完成。

class UnionFind:
    def __init__(self, size):
        self.root = [i for i in range(size)]

    def find(self, x):
        if x == self.root[x]:
            return x
        self.root[x] = self.find(self.root[x])
        return self.root[x]

    def union(self, x, y):
        rootX = self.find(x)
        rootY = self.find(y)
        if rootX != rootY:
            self.root[rootY] = rootX

# 示例使用
uf = UnionFind(10)
uf.union(1, 2)
uf.union(2, 3)
print(uf.find(1))  # 输出: 0
print(uf.find(3))  # 输出: 0

在这个代码示例中, UnionFind 类实现了并查集的数据结构。 find 方法用于查找元素所在集合的根节点,并进行路径压缩。 union 方法用于合并两个元素所在的集合,它们最终会指向同一个根节点。在这个例子中,元素1、2和3被合并到同一个集合中。

5. 图的算法应用

图是计算机科学中用来表示复杂网络结构的重要模型,它由一组节点(也称作顶点)和连接这些节点的边组成。在现实世界中,图可用于表示各种系统,如社交网络、公路网络、互联网等。图的算法应用广泛,包括路径寻找、网络设计、资源分配等众多领域。

5.1 图的基本概念和表示方法

图的概念可以由其组成元素来定义:节点、边以及可能的权重。

5.1.1 无向图与有向图的区别

  • 无向图 由一组无方向的边连接起来的节点组成,边没有方向,表示两个节点之间是相互连接的。
  • 有向图 由一组有方向的边连接起来的节点组成,边具有方向性,表示连接是从一个节点指向另一个节点。

5.1.2 邻接矩阵和邻接表

在图的计算机表示中,邻接矩阵和邻接表是最常用的两种方法。

  • 邻接矩阵 :对于有 n 个节点的图,邻接矩阵是一个 n×n 的二维数组。矩阵中的元素表示两个节点之间的边是否存在,通常用 1 表示存在,用 0 表示不存在。
  • 邻接表 :每行或者列表示图中的一个节点,每个节点都包含一个与之相连节点的列表。
# 邻接表的简单实现
graph = {
    'A': ['B', 'C'],
    'B': ['D', 'E'],
    'C': ['F'],
    'D': [],
    'E': ['F'],
    'F': []
}

5.2 图的遍历算法

图的遍历算法是探索图中所有节点的方式,以便于我们可以了解图的整体结构。

5.2.1 深度优先搜索(DFS)

深度优先搜索(DFS)是一种用于遍历或搜索树或图的算法。该算法沿着树的深度遍历树的节点,尽可能深地搜索树的分支。当节点v的所有邻接节点都已被探寻过,搜索将回溯到发现节点v的那条边的起始节点。

def dfs(graph, start):
    visited = set()
    stack = [start]

    while stack:
        vertex = stack.pop()
        if vertex not in visited:
            visited.add(vertex)
            stack.extend(graph[vertex] - visited)
    return visited

# 使用DFS遍历图
visited = dfs(graph, 'A')
print(visited)

5.2.2 广度优先搜索(BFS)

广度优先搜索(BFS)是一种用于遍历或搜索树或图的算法。该算法从起始节点开始,逐层向外扩展,直到所有节点都被访问。

from collections import deque

def bfs(graph, start):
    visited = set()
    queue = deque([start])

    while queue:
        vertex = queue.popleft()
        if vertex not in visited:
            visited.add(vertex)
            queue.extend(set(graph[vertex]) - visited)
    return visited

# 使用BFS遍历图
visited = bfs(graph, 'A')
print(visited)

5.3 最短路径和最小生成树

图算法中的经典问题之一是求解最短路径和最小生成树。

5.3.1 Dijkstra算法和Bellman-Ford算法

Dijkstra算法适用于没有负权边的图,用来找出源点到所有其他节点的最短路径。Bellman-Ford算法能够处理含有负权边的图,但时间复杂度较高。

5.3.2 Prim算法和Kruskal算法

最小生成树问题是指在一个加权连通图中找到一个边的子集,这些边构成一棵树,且包含图中所有顶点,使得这个树的所有边的权值之和最小。Prim算法和Kruskal算法是两种解决最小生成树问题的算法。

  • Prim算法 :从任意一个顶点开始,逐步增加新的顶点,并保证始终保持为一个最小生成树的子集。
  • Kruskal算法 :将所有边按照权重从小到大排序,然后选择最小的边,保证不会形成环,直到所有的顶点都被连接。

图的算法应用对于理解和解决现实世界中的许多问题至关重要。掌握这些算法不仅能够帮助我们解决实际问题,而且在许多技术和面试场合中都非常重要。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:数据结构是编程和算法面试中的重要环节,本资源库旨在为面试者提供全面的数据结构知识,包括数组、链表、栈、队列、树、图、散列表、排序和查找算法、动态规划、递归与回溯等主题。通过分析真实面试题目和解题技巧,帮助面试者在面试中展现出扎实的基础和高效的解题能力。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值