基于 Bilstm-Attention 的垃圾邮件检测系统:代码深度模块化剖析

18 篇文章 ¥299.90 ¥399.90

基于 Bilstm-Attention 的垃圾邮件检测系统:代码深度模块化剖析

摘要: 本文围绕基于深度学习的垃圾邮件检测系统的设计与实现展开研究,旨在解决垃圾邮件泛滥带来的用户体验下降和安全风险问题。首先,阐述了垃圾邮件检测的研究背景与应用价值,其工程背景涉及数据集构建、机器学习与深度学习技术应用及性能优化等,在电子邮件安全、企业邮件管理、个性化过滤等场景具有重要作用。通过分析国内外研究现状,指出传统规则方法的局限性及机器学习、深度学习方法的发展趋势,并明确了当前存在文本多样性导致漏检、大型模型推理速度慢等问题,据此选择 Bilstm-Attention 模型作为核心方案,以平衡检测精度与实时性需求。研究内容包括构建标注数据集、改进垃圾邮件检测算法、实现 Web 端系统及优化用户体验。系统采用 Bilstm-Attention 模型,结合 Word2Vec 词向量提升语义表示,通过数据预处理(分词、去噪)、模型训练与优化,最终实现 Web 端部署。实验结果显示,该系统在验证集上的准确率达 96.31%,且推理速度快,支持跨平台使用,用户可通过浏览器便捷操作。本研究通过引入注意力机制提升模型精度,兼顾系统响应速度与易用性,为垃圾邮件检测提供了高效可行的解决方案,对提升电子邮件安全性和用户体验具有实践意义。。

一、背景介绍

随着电子邮件的广泛应用,垃圾邮件的数量也在不断攀升,给用户带来了诸多困扰,如信息干扰、安全风险等。垃圾邮件不仅可能包含欺诈、钓鱼内容,还可能携带恶意软件,严重威胁用户的信

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安替-AnTi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值