图像处理(Image Processing) ---------- 图像缩放 (C#实现)

本文探讨图像放大和缩小过程中像素处理的原理,重点介绍了C#中实现的最临近点插值和双线性插值算法。这两种方法用于确定新增或减少像素的值,以达到视觉效果的平衡。通过反向映射计算,可以将放大或缩小的图像坐标转换为原始图像中的位置。文章提供了C#代码示例,适用于图像的放大和缩小操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像的放大和缩小,必然伴随则图像中像素的增加或者减少。而我们现在要讨论的就是增加和减少的像素,都是哪些像素,如何得到。

现在主流的放大方法:

  1. 最临近点插值算法(Nearest Neighbor):最简单、速度最快的一种算法。做法是将放大图像的坐标点换算回原始影像上,与原始图像哪个坐标点最近,就取其Pixel值作为新像素值。
  2. 双线性插值算法(Bilinear Interpolation): 视觉上会比最邻近点插值算法要好一些,但运算量也大一些。做法是将放大图像的坐标点换算回原始影像上,通常不会是整数位置,若是小数位置即与周围的4个点按距离按比例计算Pixel,作为新像素值。跟图像旋转双线性意思是一样的吧~可以参考:https://blog.csdn.net/weixin_35811044/article/details/84194234
  3. 双立方插值算法(Bicubic Interpolation)、自适应样条插值极其增强技术( S-Spline & S-Spline XL)。

个人认为缩小同样也可以使用上面的方法~~

反向映射计算方法,就是将放大或缩小的图像坐标乘上其倍数的倒数,即可大致得到其在原图中的位置。

如:2*2 放大 2倍 --> 4*4。

4*4 像素点反向映射: 

(0,0)*1/2 = (0,0),(1,0)*1/2 = (0.5,0),(2,0)*1/2 = (1,0),(3,0)*1/2 = (1.5,0) 

(1,1)*1/2 = (0.5,0.5),(2,2)*1/2 = (1,1),(3,3)*1/2 = (1.5,1.5) .........

本文主要是用C#实现Nearest Neighbor、Bilinear Interpolation,两种方式的放大与缩小。下面是代码:

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值