图像的放大和缩小,必然伴随则图像中像素的增加或者减少。而我们现在要讨论的就是增加和减少的像素,都是哪些像素,如何得到。
现在主流的放大方法:
- 最临近点插值算法(Nearest Neighbor):最简单、速度最快的一种算法。做法是将放大图像的坐标点换算回原始影像上,与原始图像哪个坐标点最近,就取其Pixel值作为新像素值。
- 双线性插值算法(Bilinear Interpolation): 视觉上会比最邻近点插值算法要好一些,但运算量也大一些。做法是将放大图像的坐标点换算回原始影像上,通常不会是整数位置,若是小数位置即与周围的4个点按距离按比例计算Pixel,作为新像素值。跟图像旋转双线性意思是一样的吧~可以参考:https://blog.csdn.net/weixin_35811044/article/details/84194234
- 双立方插值算法(Bicubic Interpolation)、自适应样条插值极其增强技术( S-Spline & S-Spline XL)。
个人认为缩小同样也可以使用上面的方法~~
反向映射计算方法,就是将放大或缩小的图像坐标乘上其倍数的倒数,即可大致得到其在原图中的位置。
如:2*2 放大 2倍 --> 4*4。
4*4 像素点反向映射:
(0,0)*1/2 = (0,0),(1,0)*1/2 = (0.5,0),(2,0)*1/2 = (1,0),(3,0)*1/2 = (1.5,0)
(1,1)*1/2 = (0.5,0.5),(2,2)*1/2 = (1,1),(3,3)*1/2 = (1.5,1.5) .........
本文主要是用C#实现Nearest Neighbor、Bilinear Interpolation,两种方式的放大与缩小。下面是代码:
<