蓝桥杯矩阵翻转java_矩阵翻转硬币 蓝桥杯

本文介绍了蓝桥杯矩阵翻转问题的解题思路,从特殊情况n=1分析,得出当n行m列矩阵经过翻转操作后,反面的硬币个数为sqrt(n) * sqrt(m)。针对大数开方,提出了分治策略,通过逐位判断确定结果,并给出了C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0818b9ca8b590ca3270a3433284dd417.png

0818b9ca8b590ca3270a3433284dd417.png

解题思路分析:           n=2, m=3 翻硬币过程(1代表正面,0代表反面):

step 1 :

0818b9ca8b590ca3270a3433284dd417.png

step 2 : 当(x, y) = (1, 1)时, (i * x,  j * y)将都要翻转,i, j 取整数

0818b9ca8b590ca3270a3433284dd417.png

step 3:当(x,y)= (1,2)时

0818b9ca8b590ca3270a3433284dd417.png

step 4:当(x,y)=(1,3)时

0818b9ca8b590ca3270a3433284dd417.png

step 5:当(x,y)=(2,1)时

0818b9ca8b590ca3270a3433284dd417.png

step 6:当(x,y)=(2,2)时

0818b9ca8b590ca3270a3433284dd417.png

step 7:当(x,y)=(2,3)时

0818b9ca8b590ca3270a3433284dd417.png

这种方法很麻烦,小数据还能应付,像题目中要求有1000位数,根本不可能,所以有必要另避蹊径。从简单到复杂,慢慢分析,看有什么规律:

先看 n = 1 的情况:

对于(1 , k)点只要看它翻转的次数奇偶性就能确定它最终的状态。因为 x = 1, 每一行都要参与翻转,当 y 能整除 m 的时,(1 , k)才会翻转。所以(1 , m)从开始到结束全部翻转的次数取决于 m 的约数个数,1 的约数个数为1 , 3 的约数个数为2, 5 的约数个数为2, 9 的约数个数为3。

当 k = i^2 (i = 1 ,2 ,3···) 其约数个数为奇数,否则 其他约数个数为偶数。 因为一般数约数都是成对出现,而一个数的平方数,有两个约数相等。

所以(1 , k) {k = i^2 (i = 1 ,2 ,3···)} 最终状态为0,其他点则为1。

因而矩阵最后0的个数总和 count = sqrt(m) , 取整。

再来看一般情况:(x , y)最后状态是什么?现在行的变化也是它翻转的因素。从上面容易推出,当y确定后,他的翻转次数为 x 的约数个数。而(x , y)总共翻转的次数 = (x的约数个数 * y的约数个数)。刚才分析了,只有在(x , y)翻转的次数为奇数时 它的最终状态才为 0。而只有 奇数*奇数 = 奇数,所以x ,y的约数个数必须为奇数,即: x = i^2 {i = 1 ,2 ,3···} 且  y = j^2 (j = 1 ,2 ,3···)。

最后得出结论:

对于n行m列矩阵,经过 Q 操作后 反面的次数 count = sqrt(n) * sqrt(m) ,(取整后再相乘)。

终于是找到了公式,可是又有了新的难题,怎么对1000位数开方呢?这里先给出定理:

假设位数为len的整数,开方取整后为一个lenSqrt位数。

当len为偶数,lenSqrt = len / 2 .

当len为奇数,lenSqrt = (len / 2) + 1 .

现在就简单了,位数确定了从高位到低位一位一位地确定。比如:sqrt(1028) ,表示对1028开方取整

它开方取整后两位数.先看第一位:

取 0, 00 * 00 < 1028  所以sqrt(1028) > 00

取 1, 10 * 10 < 1028  所以sqrt(1028) > 10

取 2, 20 * 20 < 1028  所以sqrt(1028) > 20

取 3, 30 * 30 < 1028  所以sqrt(1028) > 30

取 4, 40 * 40 > 1028  所以sqrt(1028) < 40 , 所以第一位取 3 。

第二位:

取 0,  30 * 30 < 1028  所以sqrt(1028) > 30

取 1,  31 * 31 < 1028  所以sqrt(1028) > 31

取 2,  32 * 32 < 1028  所以sqrt(1028) > 32

取 3,  33 * 33 > 1028  所以sqrt(1028) < 33 , 所以sqrt(1028) = 32 。

大数是一样的道理,只不过大数用字符串保存,字符串相乘也要自己来实现。

下面是C++代码:

/*

* =====================================================================================

*

* Filename: coin.cpp

*

* Description: 蓝桥杯 翻硬币

*

* Version: 1.0

* Created: 03/23/2015 07:35:57 PM

* Revision: none

* Compiler: gcc

*

*

* =====================================================================================

*/

#include

#include

using namespace std;

//str1 / str2

string str_divi(string str1, string str2)

{

}

//str1 * str2

string str_mult(string str1, string str2)

{

cout<

string str_result = "";

int len1 = str1.length();

int len2 = str2.length();

int num[500] ={0};

int i = 0, j = 0;

for(i = 0; i < len1; i++)

{

for(j = 0; j < len2; j++)

{

num[len1-1-i + len2-1-j] += (str1[i] - '0') * (str2[j] - '0');

}

}

for(i = 0; i < len1 + len2; i++)

{

num[i + 1] += num[i] / 10;

num[i] = num[i] % 10;

}

for(i = len1 + len2 - 1; i >= 0; i--)

{

if(num[i] != 0)break;

}

for(j = i; j >= 0; j--)

{

str_result +=num[j] + '0';

}

return str_result;

}

//str1 * 10^pos(就是在str1后面添上pos个0), 与str2比较

int compare(string str1, string str2, int pos)

{

int len1 = str1.length();

int len2 = str2.length();

cout<

cout<

if(len2 > len1 + pos) return 0;

if(len2 < len1 + pos) return 1;

int i = 0;

for(i = 0; i < len2; i++)

{

if((str1[i] - '0') > (str2[i] - '0')) return 1;

if((str1[i] - '0') < (str2[i] - '0')) return 0;

}

return 0;

}

//对大数str开方取整

string str_sqrt(string str)

{

cout<

int len = str.length();

int i = 0, j = 0;

string str_result = "";

string str1 = "";

cout<

if(len % 2 == 0)//偶数

{

for(i = 0; i < len / 2; i++)

{

for(j = 0; j < 10; j++)

{

str1 = str_result;

str1 +=j + '0';

//

if(compare(str_mult(str1, str1), str, 2*(len/2-i-1)) == 1)

{

str_result += j - 1 + '0';

break;

}

if(j == 9) str_result += '9';

}

}

}

else//奇数

{

for(i = 0; i < len/2+1; i++)

{

for(j = 0; j < 10; j++)

{

str1 = str_result;

str1 += j + '0';

if(compare(str_mult(str1, str1), str, 2*(len/2 - i)) == 1)

{

str_result += j-1 + '0';

break;

}

if(j == 9) str_result += '9';

}

}

}

return str_result;

}

int main()

{

string str1, str2;

//string str_result;

cin >> str1 >> str2;

cout<

return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值