拉普拉斯噪声公式_高斯拉普拉斯算子(Laplace of Gaussian)

高斯拉普拉斯算子(Laplace of Gaussian, Log)用于图像边缘检测,通过先对图像进行高斯滤波降噪,再应用Laplace算子增强边缘。其公式涉及高斯卷积和二阶导数,常用于减少对离散点和噪声的敏感性。边缘检测步骤包括Log卷积、过零点检测和阈值化。" 9354979,1489805,检测并使用指定浏览器打开网页,"['Android开发', '应用交互', '程序调试', '语音识别']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高斯拉普拉斯(Laplace of Gaussian)

Laplace算子作为一种优秀的边缘检测算子,在边缘检测中得到了广泛的应用。该方法通过对图像

求图像的二阶倒数的零交叉点来实现边缘的检测,公式表示如下:

由于Laplace算子是通过对图像进行微分操作实现边缘检测的,所以对离散点和噪声比较敏感。于是,首先对图像进行高斯卷积滤波进行降噪处理,再采用Laplace算子进行边缘检测,就可以提高算子对噪声和离散点的鲁棒性,如此,拉普拉斯高斯算子Log(Laplace of Gaussian)就诞生了。

高斯卷积(Gaussian convolution ),高斯函数的表达式如下:

原图像与高斯卷积的表达式如下:

因为:

所以Log可以通过先对高斯函数进行偏导操作,然后进行卷积求解,公式表示如下:

2D高斯拉普拉斯算子可以通过任何一个方形核进行逼近,只要保证该核的所有元素的和或均值为0,如下一个5×5的核进行逼近:

高斯拉普拉斯边缘检测算法的步骤:

1)对原图像进行Log卷积。

2)检测图像中的过零点( Zero Crossings,也即从负到正或从正到负)。

3)对过零点进行阈值化。

更多信息参考:

作者:kezunhai 出处:http://blog.csdn.net/kezunhai&n

### 高斯-拉普拉斯算子理论与实现 高斯-拉普拉斯算子(Laplacian of Gaussian, LoG)是一种用于图像处理和计算机视觉中的边缘检测技术。它通过结合高斯平滑滤波器和拉普拉斯算子来减少噪声的影响并增强边缘特征[^1]。 #### 理论基础 LoG 的核心思想在于先应用高斯函数对输入图像进行平滑处理,从而降低噪声干扰;随后计算经过平滑后的图像的二阶导数——即拉普拉斯算子的结果。这种组合可以有效突出图像中的局部变化区域,特别是边界位置。具体而言: - **高斯函数**:其定义形式为 \( G(x, y; \sigma) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \),其中参数 σ 控制了平滑程度[^3]。 - **拉普拉斯算子**:对于二维离散信号 f(i,j),可表示为其在水平方向上的差分加上垂直方向上的一次差分之和,即 Δf(i,j)=∂²f/∂x²+∂²f/∂y² 。当应用于连续空间时,则变为 ∇²g=∇·(∇g)[^2]。 两者相结合形成的新核称为 Mexican Hat 函数,在实际操作过程中可以直接构建此复合卷积模板而无需分别执行两步独立运算过程。 #### 实现方法 以下是 Python 中基于 OpenCV 和 SciPy 库的一个简单例子展示如何创建以及运用该算法: ```python import cv2 from scipy import ndimage import numpy as np import matplotlib.pyplot as plt # 加载灰度图 img = cv2.imread('example.jpg',0) # 使用SciPy生成LOG响应 log_img = ndimage.gaussian_laplace(img, sigma=1.5) plt.figure(figsize=(10,7)) plt.subplot(121), plt.imshow(img,cmap='gray'), plt.title('Original') plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(log_img,cmap='gray'), plt.title('LoG Response') plt.xticks([]), plt.yticks([]) plt.show() ``` 上述代码片段展示了加载一张图片之后调用 `scipy.ndimage` 提供的功能快速获得对应的 LOG 响应值,并利用 Matplotlib 将原图及其变换结果对比显示出来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值