作为一个多年的微信公众号作者,了解微信公众号文章打分的机制是十分有必要的。微信在后台其实有一整套的打分机制,今天基于腾讯的这篇Paper《Cognitive Representation Learning of Self-Media Online Ariticle Quality》为大家介绍下文章质量打分背后的算法理论。
在这篇paper中其实重点分享了两个方面,一方面是文章质量分的深度学习模型设计方法,另一方面是训练数据的构造法。
1 文章质量分模型架构设计方法

整个模型的设计分为两层,第一层是蓝、粉、绿这三个模块,作为基础的文章质量embedding生成层。第二层是最上方的FC Layer全连接层,这一层主要是做评分。
论文里把上面这个网络架构叫做CoQAN,文章质量分的训练模式被当成了二分类问题。
在模型设计上分为三个独立的模块(Subnetwork),分别是:
- Layout Organization Subnetwork:布局结构判断网络,用来生成布局相关的评分
- Writing Characteristics Subnetwork:写作风格判断网络,用来评估文章的写作风格
- Text Semantics Subnetwork:语意深度判断网络,用来评估文章内容的质量
(1)Layout Organization Subnetwork
在布局评估网络中,主要通过循环网络算法GRU去判断图片、文本、视频的布局结构。