java 防止超卖_电商防止库存超卖解决方案

本文介绍了两种防止电商库存超卖的解决方案。一种是悲观锁策略,通过redis队列和mysql事务控制确保线程安全,但在高并发场景下可能导致请求等待。另一种是乐观锁策略,利用Redis的watch功能,通过版本号校验更新,减少了锁竞争,但可能增加CPU计算开销。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 悲观锁解决方案

悲观锁,也就是在修改数据的时候,采用锁定状态,排斥外部请求的修改。遇到加锁的状态,就必须等待。可以采用redis队列+mysql事务控制的方案,下面是流程图:

e00d503daee3bbc38acb31a76d7e4e08.png

mysql的执行代码:

beginTranse(开启事务)

try{

//quantity为请求减掉的库存数量

$dbca->query('update s_store set amount = amount - quantity where postID = 12345');

$result = $dbca->query('select amount from s_store where postID = 12345');

if(result->amount < 0){

throw new Exception('库存不足');

}

}catch($e Exception){

rollBack(回滚)

}

commit(提交事务)

先执行update锁住本条记录,这样就能保证其他线程执行不了更新操作,可以避免超扣现象。

上述的方案的确解决了线程安全的问题,但是,别忘记,我们的场景是“高并发”。也就是说,会很多这样的修改请求,每个请求都需要等待“锁”,某些线程可能永远都没有机会抢到这个“锁”,这种请求就会死在那里。针对这个问题我们稍微修改一下上面的场景,我们直接将请求放入队列中的,采用FIFO(First Input First Output,先进先出),这样的话,我们就不会导致某些请求永远获取不到锁。下面是整个执行流程图:

166e32d4244400a7ececd8f2e732b3d3.png

2 乐观锁解决方案

悲观锁的解决方案解决了锁的问题,全部请求采用“先进先出”的队列方式来处理。那么新的问题来了,高并发的场景下,因为请求很多,系统处理队列内请求的速度根本无法和疯狂涌入队列中的数目相比,很可能一瞬间将队列内存“撑爆”,最终Web系统平均响应时候还是会大幅下降,系统还是陷入异常。

这个时候,我们就可以讨论一下“乐观锁”的思路了。乐观锁,是相对于“悲观锁”采用更为宽松的加锁机制,大都是采用带版本号(Version)更新。实现就是,这个数据所有请求都有资格去修改,但会获得一个该数据的版本号,只有版本号符合的才能更新成功,其他的返回抢购失败。这样的话,我们就不需要考虑队列的问题,不过,它会增大CPU的计算开销。但是,综合来说,这是一个比较好的解决方案。

乐观锁的执行流程如下:

1eb8fb5d3da8059f436af6044daab096.png

有很多软件和服务都“乐观锁”功能的支持,例如Redis中的watch就是其中之一。通过这个实现,我们保证了数据的安全。

下面是利用Redis中的watch实现乐观锁的代码

while (true) {

System.out.println(Thread.currentThread().getName());

jedis = RedisUtil.getJedis();

try {

jedis.watch("mykey");

int stock = Integer.parseInt(jedis.get("mykey"));

if (stock > 0) {

Transaction transaction = jedis.multi();

transaction.set("mykey", String.valueOf(stock - 1));

List result = transaction.exec();

if (result == null || result.isEmpty()) {

// 可能是watch-key被外部修改,或者是数据操作被驳回

System.out.println("Transaction error...");

}

} else {

System.out.println("库存为0");

break;

}

} catch (Exception e) {

e.printStackTrace();

RedisUtil.returnResource(jedis);

}finally{

RedisUtil.returnResource(jedis);

}

}

参考资料:

http://www.cnblogs.com/php5/p/4362244.html

http://www.kuqin.com/shuoit/20141203/343669.html

http://www.cnblogs.com/shihaiming/p/6062663.html

### 防止库存解决方案 在分布式环境中,防止库存是一个常见的挑战。为了确保高并发场景下的数据一致性,可以采用多种技术手段来解决这一问题。 #### 数据库层面的控制 一种常见的方式是在数据库层面上通过事务隔离级别或者锁机制来保障库存的一致性。例如,在更新库存时可以通过 `SELECT ... FOR UPDATE` 来锁定记录,从而避免其他线程在同一时间修改相同的库存项[^1]。这种方式能够有效减少竞争条件的发生概率。 另一种方法是利用乐观锁(Optimistic Locking)。这通常涉及版本号字段或时间戳列;每次尝试更改商品数量之前先验证当前状态是否匹配预期值。如果发现不一致,则拒绝操作并提示重试逻辑给调用方处理异常情况[^2]。 #### 分布式锁的应用 除了依靠关系型数据库外,还可以引入外部组件如 Redis 实现更高效的全局同步方案——即所谓的“分布式锁”。Redis 提供原子命令支持快速构建这样的功能模块:当某个服务节点想要扣减特定产品的可用量前需成功获取对应 key 的独占权限才能继续执行后续流程; 同样地, 只有释放该资源之后其它等待中的请求才允许被响应[^3]. 以下是基于 Redis 的简单伪代码示例展示如何实现上述描述的功能: ```java public boolean tryAcquireLock(String productId) { String lockKey = "inventory_lock:" + productId; long expireTimeMillis = System.currentTimeMillis() + LOCK_EXPIRATION_TIME_MILLIS; Boolean acquired = redisTemplate.opsForValue() .setIfAbsent(lockKey, String.valueOf(expireTimeMillis), Duration.ofMillis(LOCK_EXPIRATION_TIME_MILLIS)); if (acquired != null && acquired){ return true; } // Check existing expiration time and renew it only when expired already. String currentExpireStr = redisTemplate.opsForValue().get(lockKey); if(currentExpireStr!=null && Long.parseLong(currentExpireStr)<System.currentTimeMillis()){ String oldValue = redisTemplate.opsForValue().getAndSet(lockKey,String.valueOf(expireTimeMillis)); if(oldValue.equals(currentExpireStr)){ return true; } } return false; } ``` 此函数实现了带有续约能力的安全加锁过程,适用于大多数实际应用场景下预防死锁现象发生的同时也提高了系统的鲁棒性和性能表现[^4]。 #### 最终一致性模型设计 对于某些业务来说可能完全杜绝任何可能性都显得过于严格甚至代价高昂,因此也可以考虑接受一定程度上的短暂偏差并通过补偿措施事后修复错误订单记录达成最终一致性目标。比如定期扫描所有未完成交易的状态并与真实货物供应情况进行核对调整差异部分即可满足大部分电商网站的需求标准[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值