判断两条曲线相似度_圆锥曲线第八节(新):退化圆锥曲线

本文介绍了退化圆锥曲线的定义,通过二次型的几何意义探讨了不可逆二次型的分类,并展示了如何用点矢和线矢表示二次型。通过具体的例题,阐述了退化圆锥曲线与点、线之间的关系,以及如何进行齐次化联立的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录:

质点:圆锥曲线题目的三维矢量解法​zhuanlan.zhihu.com

因为 @心潮逐浪 同学 的新观点 https://zhuanlan.zhihu.com/p/113949979 ,我对第八节的内容进行了大量修改,以便自然地过渡到新的观点。同时我润色了一下语言,使得论述更加清晰。我之后会用新的一节来更充分地介绍这一观点。

先来回顾一下圆锥曲线的定义:

一个不定的对称可逆的(0,2)型张量

被称为圆锥曲线张量。用
可以得到它的逆张量
,把g作为度规时可写成
则点在圆锥曲线上,
则线与圆锥曲线相切。

圆锥曲线要求张量

是可逆的,但是那些不可逆的张量同样有重要的用处。比如说,双曲线
时会变成两条直线。这“两条直线”可以看作一种特殊的圆锥曲线,或者说“退化圆锥曲线”。自然,由于点与线的对偶性,“两个点”也属于这一类(它实际上是被压扁成一条线段的椭圆,“两个点”就是它的两个端点)。我们有必要找到一种方式把“两条直线”、“两个点”与圆锥曲线一起研究。事实上,我们恰好可以用那些不可逆的张量来表示它们。

另一个重要的例子是,想象一条直线与一个椭圆交于两个点

,或者过一个点作椭圆的两条切线。
这两个点(或线)是不能拆开的,它们具有完全相同的地位,必须把它们放在一起看待(这句话的含义目前还不是特别明确,请先往后看)。这时,用某个不可逆的二阶张量(而不是用两个点矢
)表示它们是最好的方式。

为了容纳退化圆锥曲线,我们作出以下定义:

1.不定对称的(2,0)型张量

称为二次点张量,它对应的几何元素称为二次点。
(有时我们会省略“张量”两字,比如直接称
为二次点。和圆锥曲线一样,我们并不认真讨论“不定”这一性质。)

2.不定对称的(0,2)型张量

称为二次线张量,它对应的几何元素称为二次线。

3.二次点与二次线统称二次型,或者二次曲线。

4.如果

,称直线
经过二次点
(如果
是圆锥曲线,这一称呼等价于
相切)
满足此方程的所有
称为一个二次线束。如果
是不可逆的,则称为退化二次线束。

5.如果

,称点
在二次线
上。满足此方程的所有
称为一个二次点列。如果
是不可逆的,则称为退化二次点列。

有一个上指标是点,两个对称的上指标是二次点。一个下指标是线,两个对称的下指标是二次线。可见“二次点、二次线”这一说法是点与线的推广。

二次型可以是可逆的,也可以是不可逆的。圆锥曲线

是二次线的可逆特例,它自然生成了一个二次点
。而不可逆的二次线就不能生成某个二次点,反之同理。

现在我们来讨论不可逆二次型的几何意义。

按照二次型矩阵的秩,也就是号差中0的个数,可以把二次型分为三类:没有0、有1个0、有2个0。

没有0意味着可逆,也就是说它是圆锥曲线;有1个0或者2个0的二次型是不可逆的。我们之后将会证明,1个0的二次型对应“两个点”或“两条线”;2个0的二次型对应“单个点”或者“单条线”。我们现在以“二次线”为例给出具体计算,对“二次点”可以进行直接的类比。

应用线性代数的知识,如果

的号差中有1个0,那么关于
的线性方程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值