目录:
质点:圆锥曲线题目的三维矢量解法zhuanlan.zhihu.com因为 @心潮逐浪 同学 的新观点 https://zhuanlan.zhihu.com/p/113949979 ,我对第八节的内容进行了大量修改,以便自然地过渡到新的观点。同时我润色了一下语言,使得论述更加清晰。我之后会用新的一节来更充分地介绍这一观点。
先来回顾一下圆锥曲线的定义:
一个不定的对称可逆的(0,2)型张量
圆锥曲线要求张量
另一个重要的例子是,想象一条直线与一个椭圆交于两个点
为了容纳退化圆锥曲线,我们作出以下定义:
1.不定对称的(2,0)型张量
2.不定对称的(0,2)型张量
3.二次点与二次线统称二次型,或者二次曲线。
4.如果
5.如果
有一个上指标是点,两个对称的上指标是二次点。一个下指标是线,两个对称的下指标是二次线。可见“二次点、二次线”这一说法是点与线的推广。
二次型可以是可逆的,也可以是不可逆的。圆锥曲线
现在我们来讨论不可逆二次型的几何意义。
按照二次型矩阵的秩,也就是号差中0的个数,可以把二次型分为三类:没有0、有1个0、有2个0。
没有0意味着可逆,也就是说它是圆锥曲线;有1个0或者2个0的二次型是不可逆的。我们之后将会证明,1个0的二次型对应“两个点”或“两条线”;2个0的二次型对应“单个点”或者“单条线”。我们现在以“二次线”为例给出具体计算,对“二次点”可以进行直接的类比。
应用线性代数的知识,如果