c# 傅里叶变换 频域_GCN篇——拉普拉斯矩阵和(反)傅里叶变换

本文简要介绍了拉普拉斯矩阵的三种定义,重点讨论了对称归一化拉普拉斯矩阵及其性质,强调了其在图信号处理中的作用。此外,详细阐述了傅里叶变换和反傅里叶变换在图卷积神经网络中的应用,说明如何通过频域变换进行滤波和卷积操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

a2a011d32573a4e122b1eb5e16c0208a.gif点击上方蓝字 关注我吧

前言

在图卷积神经网络的算法分类中,有一类是基于频域的图卷积神经网络。在此类方法中,你一定听说过拉普拉斯矩阵和傅里叶变换,这两个名词就听着很难的样子,然后你去搜这两个的相关解释,你可能会发现拉普拉斯矩阵一会儿长这样子,一会儿又长这样子,还有一大堆关于信号处理的东西,什么三角函数、频率、振幅、欧拉公式、滤波。数学不好或者信号处理课没上过(好)的同学只会看的云里雾里,不知所以,一脸茫然,不知所措,无从下手,内心直呼:“啥啥啥,这都是啥,我知道你很懂,但,能不能说点人话”。

所以本文打算简单地介绍下拉普拉斯矩阵和傅里叶变换,不涉及太多具体理论。

拉普拉斯矩阵

我们不去追究拉普拉斯矩阵背后的物理意义,就简单地知道它是怎么定义的就好。用分别表示图的邻接矩阵、度矩阵、拉普拉斯矩阵。文中用到的例子均为图1中的图。

d9fae46a8ae00923f0a6cf4fb2b47db0.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值