计算机进制数的应用,数的进制及应用【信息技术】.doc

这篇文档详细介绍了数的进制转换原理,包括十进制与R进制、R进制与-R进制之间的转化方法。通过具体的例子阐述了整数和小数的转化过程,并探讨了-R进制的计数规则。教学目标是让学生掌握各种进制的相互转化,并能应用于实际问题中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

您所在位置:网站首页 > 海量文档

&nbsp>&nbsp幼儿/小学教育&nbsp>&nbsp课外知识

7e3e25dd1884ce9b7725a69a698d5758.gif

数的进制及应用【信息技术】.doc10页

本文档一共被下载:2377011b61454b208b34ad77b4c31088.gif次,您可全文免费在线阅读后下载本文档。

072ad097814a33d1ad18e33ca14a5a9e.png

9ec2792a743ebdf4575ee09a03c275ea.png

7af312d1be2cfc1e59f15880bb7a7e7a.png

5f207613e329ca76dc87c76d3ff77e64.png

adf7aa3071c520b8a2063089f549261c.png

下载提示

1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

2.该文档所得收入(下载+内容+预览三)归上传者、原创者。

3.登录后可充值,立即自动返金币,充值渠道很便利

课题:数的进制

教学目标:

1、掌握十进制数与R进制数的相互转化方法和原理;

2、掌握R进制数与-R进制数的转化,从而解决了十进制转化为-R进制的另一种方法;

3、数的进制的应用举例。

重点:数的进制转化的原理及数的进制的应用。

难点:R进制数转化为-R进制数,怎样将一个问题转化了一个数的进制的问题。

教学过程:

数的进制的概念:

日常生活中我们计数的方式有很多,如一年有12个月,则是12进制,一周有7天,则是7进制,等等。实际都是我们人为规定的,而平常我们用的最多的最习惯的是10进制,是因为我们古人留下来的财富,而古人是因为有10个手指便于帮助计数。需要强调的是任何一个值都可以用任何一种进制描述,但它的值是不变的,正如我们今天在一周中可以描述为星期几,在一月中描述为多少号一样。

使用R进制计数的规则:

只使用R个基数:0,1,2,……,R-1;

逢R进一,退一当R进行数的运算。

R进制数转化为十进制数

这个转化问题较简单,根据上面讲的R进制的计数规则进行展开就得到相应的十进制数的表示方法。

(anan-1……a1a0.a-1a-2……a-m)……+a1*R1+a0*R0+a-1*R-1+a-2*R-2+……+a-m*R-m

=

十进制数转化为R进制数

由于十进制数的整数与小数转化为R进制的方法不同,所以必须分开讨论。先看十进制整数的转化,再讨论十进制小数的转化,最后讨论-R进制的计数及转化问题。

十进制整数的转化

通过具体实例进行分析,如对十进制数325转化,根据原理可以按下式这样假设:

(325)10=3*102+2*101+5*100

=(anan-1……a1a0)……+a1*R1+a0*R0

=(an*Rn-1+an-1*Rn-2+……+a1)*R+a0

两边同时除以R,得到整数部分和整数部分相等,余数和余数相等,显然右边的余数就是a0,再进行同样的处理就得到a1,一直这样进行下去,直到左边的数为0是为止,由于先求出的是R进制的最低位,再按求解过程倒过来写出就得到相应的R进制数。

以R=6为例,看转化的过程:

(325)10=(1301)6

最后,得到的规律就是“除R取余”。

十进制小数的转化

通过具体实例进行分析,如对十进制数0.325转化,根据原理可以按下式这样假设:

(0.375)10=3*10-1+7*10-2+5*10-3

=(0.a-1a-2……a-m)……+a-m*R-m

=(a-1+a-2*R-1+……+a-m*R-m+1)*R-1

两边同时乘以R,等式两边的整数部分和小数部分分别相等,显然右边的整数部分就是a-1,再去掉等式的整数部分,然后进行相同的处理,就求得了a-2,一直进行下去,直到左边的值为0时或到要求的精度为止,这样就将十进制小数转化为相应的R进制数了。

以R=2为例,说明求解过程:

(0.375)10=(0.011)2

最后得到的规律就是“乘R取整”。

R进制数转化为-R进制数

大家对R进制数都已经很熟悉了,但是,还有一种-R进制数。任何一个整数n都可以表示成,其中 ai∈[0,R-1],ai是整数。并且ak<>0。

现在我们来讨论R进制数怎么转化为-R进制数。需不需要先将R进制数转化为十进制数,再将相应的十进制利用上面的转化规律化为-R进制数,当然这是一种方法,但我们完全可以不必这样做。不妨以一个具体实例来讨论转化规律,如:

(4325)6=4*63+3*62+2*61+5*60

将等式右边改写成一个-6进制数的形式:

4*(-6)3+3*(-6)2+2*(-6)1+5*(-6)0

比较观察一下,发现偶次幂的项与6进制数的相等,差别出在奇次幂的项,怎样修改才使它满足-6进制数表示的形式呢?记住我们计数的原理:进制只是表示方式不同,值是不变的。

那么对于上面我们倒数第二项:2*61=X*(-6)1 ? 而基数X是一个0到5之间的数,显然是不能成立的,要相等X只能等于-2,而-2不能做为-6进制的基数,解决这个问题就向高位借一个1,这样X变为(6-2),由于高位已经是相等的,所以高位的基数相应要加1。若高位基数加1后,值已超过5,则修改幂。这样就能确保值没有变:

2*61=(-6)*(-6)+4*(-6)1

处理方法可以设计一个指P,从R进制数的最低位按上面的方式往高位处理,就实现了把R进制数转化为-R进制的数了。

对于上例我们处理后得到:1*(-6)4+2*(-6)3+4*(-6)2+4*(-6)1+5*(-6)0

因此有:(4325)6=(12445)-6=989

课堂练习

练习可以结合在讲课当中进行:

将下面进制的数转化为十进制数:

(123456.345))N个球放入编号为0,1,2,……,49的

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名:

验证码:

c9f2bced460b0329ba0aadbbc3f0fc71.png

匿名?

发表评论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值