完美世界
近日,游戏大厂「完美世界」被曝进行大规模裁员。
据爆料指出,隔天来上班,就有几个工位就空了,从刚开始的"零星几个"的工位被空出,到如今的范围越来越大,基本上"整层整层"的空出。
如今公司也出现了一些其他声音:剩下的项目,一只手都能数得过来,已经很难被称为大厂了、这是完美有史以来最大规模的优化了 ...
更加讽刺的是,职场 App 上一些完美世界的员工现身说法:
带着完美世界员工认证身份的网友指出:混子都留着呢,干活的反而被裁了。
不少声音指出,完美世界内部的关系户实在大多,本次裁员大概率又是「劣币淘汰良币」的过程。
遥想此前阿里马老师的内部信,看来"大厂病"还并非个别现象。
对此你怎么看?在市场被几个现象级手游瓜分的如今,你是否还对完美世界有印象?
...
回归主题。
来一道和「米哈游(原神)」相关的算法原题。
题目描述
平台:LeetCode
题号:768
这个问题和“最多能完成排序的块”相似,但给定数组中的元素可以重复,输入数组最大长度为 2000,其中的元素最大为 10^8
。
arr
是一个可能包含重复元素的整数数组,我们将这个数组分割成几个“块”,并将这些块分别进行排序。
之后再连接起来,使得连接的结果和按升序排序后的原数组相同。
我们最多能将数组分成多少块?
示例 1:
示例 2:
注意:
arr
的长度在arr[i]
的大小在
贪心 + 构造
一种容易想到的构造方法,是与目标序列(已排升序的数组 clone
)做区间比较。
由于题目要求尽可能划分出多的区间,我们可以从前往后处理 arr
和 clone
时统计区间内数的情况,若有 arr[i...j]
和 clone[i...j]
词频完全相同,可知 arr[i...j]
可通过内部排序调整为 clone[i...j]
,此时我们将范围
容易证明该做法的正确性:可从边界开始进行归纳分析,起始两者均从下标为 0 的位置进行扫描。假设最优解和贪心解的第一个区间的结束位置相同,问题就会归结到子问题上(即双方均从相同的子数组起始位置开始构造),因此无须额外证明;而当起始位置相同,结束位置不同时,假设分别为 和
,则必然有
(因为如果有
,那么在
扫描到前者时已经满足划分区间的条件,已经会停下来,即与贪心决策逻辑冲突),而当
时,我们可以将最优解中的区间
进一步划分为
和
根据数值之间满足严格全序,可知当 和
均不满足时,必然有
综上,我们证明了对于相同起点,贪心解与最优解结束位置必然相同,从而证明贪心解区间数与最优解相等。
于是原问题转换为如何快速对两数组(原数组 arr
和目标数组 clone
)进行词频比较,由于数值的范围为 10^8
,如果使用最裸的词频对比方案的话,需要先进行离散化,最终算法的复杂度为 。
更好的解决方案是使用哈希表进行计数,同时维护当前计数不为 0 的数值数量 tot
。
具体的,当我们处理 时,我们在哈希表中对
进行计数加一,而在处理
时,对
进行计数减一。从而将词频比较的复杂度从
下降到
。
Java 代码:
Python 代码:
TypeScript 代码:
- 时间复杂度:
- 空间复杂度: