第4章-一阶多智体系统一致性 -> 连续时间系统一致性

本章讨论一阶积分器模型的智能体系统在连续时间下如何实现一致性。通过控制输入调整速度,使得系统中所有智能体的位置最终达成一致。状态微分方程和一致性协议的数学表述为系统的分析提供了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第3章-数理知识基础 -> 坐标转换 回到目录 第4章-一阶多智体系统一致性 -> 连续时间系统一致性【程序代码】

文章目录

本章假设智能体的模型均为一阶积分器模型,分析多智能体系统在多种条件下实现协同控制时的控制器。当单个智能体的模型不同时,分别研究了连续时间系统一致性,离散时间系统一致性和含有时延的连续时间系统一致性。当智能体之间的通信关系发生变换时,分析了切换拓扑的系统一致性。当系统中含有领航者时,介绍了领航跟随系统的一致性。

4.1 一阶系统模型

为了直观解释一致性的作用,我们引入示意图 4.1。假设有 3 辆具备相同模型的无人车,其运动模型满足 p ˙ i ( t ) = v i ( t ) \dot{p} _i (t

分布时滞是指在智体系统中,由于通信传输的延迟或者计算时间等因素导致不同智体之间的信息传递存在定的时间差。这种时滞在智体系统的控制中是非常常见的,因为它会影响系统的稳定性和性能。 在Matlab中,可以使用些工具箱或者自己编写程序来模拟含时滞的智体一致性分析。以下是个简单的例子,其中有两个智体,它们之间的通信存在时滞。 ```matlab % 定义系统参数 n = 2; % 智体数目 A = [1 1; 1 -1]; % 系统矩阵 B = [0.5 0; 0 0.5]; % 输入矩阵 C = [1 0; 0 1]; % 输出矩阵 D = zeros(n); % 直通矩阵 tau = 0.5; % 时滞 % 定义控制器参数 K = [1 0; 0 1]; % 控制器增益矩阵 L = [0.5 0; 0 0.5]; % 时滞补偿矩阵 % 定义状态空间模型 sys = ss(A-B*K-L*C,B,C,D); % 定义时滞状态空间模型 sys_tau = pade(sys,tau); % 定义初始状态 x0 = [1; 1]; % 模拟系统响应 tspan = 0:0.1:10; [u, t] = gensig('square', 10, tspan(end), 0.1); [y, t, x] = lsim(sys_tau,u,t,x0); % 画出系统响应曲线 subplot(2,1,1); plot(t, y(:,1), 'r', t, y(:,2), 'b'); legend('智体1', '智体2'); xlabel('时间'); ylabel('输出'); title('含时滞智体一致性分析'); subplot(2,1,2); plot(t, x(:,1), 'r', t, x(:,2), 'b'); legend('智体1', '智体2'); xlabel('时间'); ylabel('状态'); title('含时滞智体一致性分析'); ``` 代码中包含了些基本的矩阵运算和Matlab内置函数,主要实现了以下几个步骤: 1. 定义系统矩阵A、输入矩阵B、输出矩阵C和直通矩阵D,以及时滞参数tau; 2. 定义控制器增益矩阵K和时滞补偿矩阵L; 3. 根据系统参数和控制器参数定义状态空间模型,使用pade函数将其转换为时滞状态空间模型; 4. 定义初始状态x0,并使用lsim函数模拟系统响应; 5. 画出系统响应曲线。 需要注意的是,本例只是个简单的示例,实际的智体一致性分析可能会更加复杂。同时,时滞的大小和分布方式也会对系统的稳定性和性能产生影响。因此,在实际应用中,需要根据具体情况进行调整和优化。
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhao-Jichao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值