引言:自主系统与自适应系统的崛起
在当今快速发展的技术背景下,自主系统(Autonomous Systems, AS)被广泛应用于各种领域,如无人驾驶、智能制造和云计算等。这些系统的设计目标是能够在动态环境中持续适应,以保持最佳性能。自适应系统(Self-Adaptive Systems, SAS)更进一步,具备自动监测环境并进行自我调整的能力,从而在不同的环境条件和情境下找到更合适的行为配置。
然而,许多现有的强化学习(Reinforcement Learning, RL)应用主要基于单一目标的优化,这在处理多目标问题时显得捉襟见肘。正因为如此,多目标强化学习(Multi-Objective Reinforcement Learning, MORL)在理论和实践中显得尤为重要。
多目标强化学习的必要性
在自主系统中,常常需要同时优化多个相互竞争的目标,例如在云计算中的响应时间和资源成本。传统的单一目标优化方法往往需要在设计阶段将多个目标合并成一个加权的目标函数,这种方法在应对动态变化时存在一定的局限性。为了克服这些不足,本文提出了一种新的多目标深度强化学习方法——深度W学习(Deep W-Learning, DWN),并将其应用于自适应网络服务器的优化中。
深度W学习的基本原理
深度W学习是对传统的W学习算法的扩展。W学习本身是一种多目标强化学习的方法,它通过学习不同目标的Q值来优化代理的行为。在DWN中,我们为每个目标维护独立的Q值网络,并通过W值来选择最终的行动。具体来说,DWN使用两个DQN网络:一个用于平均响