在当今的人工智能研究中,多模态生成模型正在迅速崛起。它们不仅能够处理离散数据(如文本和代码),还能够处理连续数据(如图像、音频和视频)。在这篇文章中,我们将深入探讨一种新的方法——潜在语言建模(Latent Language Modeling,LatentLM),它通过因果变换器无缝整合了连续和离散数据,并引入了下一步扩散(Next-Token Diffusion)技术,推动了多模态生成模型的发展。
📚 引言:多模态生成的挑战与机遇
多模态生成模型的目标是能够理解和生成多种类型的数据。然而,传统的方法往往依赖于将不同的数据处理模块串联起来,这种管道式的处理方式存在信息损失的问题,限制了模型的性能。为了克服这一挑战,研究者们提出了多种方法,但大多数方法在处理连续数据和离散数据时仍然存在瓶颈。
在此背景下,LatentLM应运而生。该模型通过变分自编码器(Variational Autoencoder,VAE)将连续数据表示为潜在向量,并通过下一步扩散技术进行自回归生成。这种方法不仅提高了生成质量,还简化了多模态模型的训练和推理过程。
🔍 潜在语言建模的核心机制
1. 因果变换器的应用
LatentLM采用因果变换器架构,其中每个时刻的输出都依赖于之前的输入。这种自回归生成方式使得模型能够逐步生成数据,从而保持生成过程的连贯性。具体而言,模型的输入序列可以表示为: