
CNN与目标检测
目标检测专题文章
dfsj66011
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
EfficientDet:目标识别领域的 EfficientNet
目录EfficientDet:目标识别领域的 EfficientNet0、背景1、Bi-FPN1.1 加权特征融合2、EfficientDet2.1 整体架构2.2 复合缩放3、消融实验EfficientDet:目标识别领域的 EfficientNet阅读本文可能需要一些其他模型或算法方面的先验知识:对 FPN 特征金字塔网络要了解对 EfficientNet 分类模型架构要熟悉Q...原创 2019-11-23 18:52:57 · 4972 阅读 · 0 评论 -
2.6 Fast R-CNN
目录2.6 Fast R-CNN2.6.1、Fast R-CNN 整体架构概览图2.6.2、Fast R-CNN 架构2.6.2.1 RoI 池化层2.6.2.2 多任务损失参考资料2.6 Fast R-CNNFast R-CNN 是 rgb 完成的 R-CNN 家族中的第二篇重要作品,在 R-CNN 以及 SPPNet 的基础上做了许多优化工作,在识别精度以及性能上均有较大提升。2.6....原创 2019-10-17 17:46:29 · 344 阅读 · 0 评论 -
2.1 目标检测简介
目录2.1 目标检测简介[^1]2.1.1 传统的目标检测方法2.1.2 深度学习时代的目标检测2.1 目标检测简介1目标检测是另一项非常重要的计算机视觉任务,图像分类的目的是辨别图片中所包含的主体对象是什么,而目标检测的目标是检测图像中某对象的位置所在。简单的说,图像分类任务解决的是 What 问题,而目标检测的任务是 What + Where,这是一项非常基础且具有很大挑战性的计算机视觉...原创 2019-09-08 12:46:26 · 882 阅读 · 0 评论 -
2.2 Selective Search
目录2.2 Selective Search2.2.1 算法设计原则2.2.2 层次聚合2.2.3 多元化采样策略参考资料2.2 Selective Search在目标检测任务中,我们不仅需要判断出图像中包含的对象类别,还需要检测出目标所在位置,理论上图片任何位置都可能存在任意尺度大小的某对象,然而如果采用暴力搜索模式,对任意空间位置进行搜索,这在时间复杂度上是不切实际的。另外对象之间的界限...原创 2019-09-10 22:10:44 · 252 阅读 · 0 评论 -
2.3 OverFeat
目录2.3 OverFeat2.3.1 任务与评估指标2.3.2 OverFeat 模型设计2.3.3 多尺度分类2.3.4、OverFeat 视图参考文献2.3 OverFeatOverFeat 是 ILSVRC2013 中目标定位任务的冠军,它提出了一种集成式框架,将图像分类、目标定位以及目标检测三种任务的学习过程集成到同一个 CNN 模型下。其核心原理是利用多尺度选择以及滑动窗口方式进...原创 2019-09-18 21:26:09 · 473 阅读 · 0 评论 -
2.4 R-CNN
目录2.4 R-CNN2.4.1 采样2.4.2 R-CNN 架构2.4.3 R-CNN 设计细节2.4.3.1 IoU 概念2.4.3.2 图片缩放策略2.4.3.3 预训练微调模式2.4.3.4 NMS 算法2.4.3.5 边界框回归参考资料2.4 R-CNNR-CNN 由 Ross Girshick(rbg) 提出,Ross Girshick是 Facebook 人工智能研究(FAIR...原创 2019-09-27 13:28:57 · 272 阅读 · 0 评论 -
2.5 SPPNet
目录2.5 SPPNet2.5.1 SPP 的目的2.5.2 SPP 架构2.5.3 SPP 用于目标检测2.5.4 候选区域映射参考资料2.5 SPPNetSPP(Spatial Pyramid Pooling,空间金字塔池化) 由何凯明团队在 ILSVEC 2014 中提出,利用空间金字塔池化方法可以提高已存在的一些 CNN 架构对于图像分类任务或目标检测任务的识别精度。2.5.1 S...原创 2019-10-11 15:24:59 · 165 阅读 · 0 评论