1 题目:填充每个节点的下一个右侧节点指针 II
官方标定难度:中
给定一个二叉树:
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL 。
初始状态下,所有 next 指针都被设置为 NULL 。
示例 1:
输入:root = [1,2,3,4,5,null,7]
输出:[1,#,2,3,#,4,5,7,#]
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化输出按层序遍历顺序(由 next 指针连接),‘#’ 表示每层的末尾。
示例 2:
输入:root = []
输出:[]
提示:
树中的节点数在范围 [0, 6000] 内
-100 <= Node.val <= 100
进阶:
你只能使用常量级额外空间。
使用递归解题也符合要求,本题中递归程序的隐式栈空间不计入额外空间复杂度。
2 solution
采用层序遍历然后填写 next 即可
/*
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* next;
Node() : val(0), left(NULL), right(NULL), next(NULL) {}
Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}
Node(int _val, Node* _left, Node* _right, Node* _next)
: val(_val), left(_left), right(_right), next(_next) {}
};
*/
class Solution {
public:
Node* connect(Node *root) {
if (!root) return root;
vector<Node *> last = {root};
vector<Node *> cur;
while (!last.empty()) {
for (auto x: last) {
if (x->left) cur.push_back(x->left);
if (x->right) cur.push_back(x->right);
}
for(int i = 1; i < cur.size(); i++){
cur[i - 1]->next = cur[i];
}
swap(cur, last);
cur = {};
}
return root;
}
};
结果
3 进阶
根据本层的next关系填写下一层的next关系,只需要记录上一个节点和下一层的开始节点即可。
代码
class Solution {
public:
Node *connect(Node *root) {
if (!root) return root;
// 层序遍历
Node *s = root; // 本层的开始
Node *ss = nullptr; // 下一层的开始
while (s){
Node *last = nullptr; // 前一个节点
for(Node *cur = s; cur; cur = cur->next){ // 遍历本层
if(cur->left){
if(last) { // 如果不是第一个
last->next = cur->left;
}
last = cur->left;
if(!ss) ss = cur->left;
}
if(cur->right){
if(last) { // 如果不是第一个
last->next = cur->right;
}
last = cur->right;
if(!ss) ss = cur->right;
}
}
s = ss;
ss = nullptr;
}
return root;
}
};