P5091 【模板】扩展欧拉定理
题目背景
出题人也想写有趣的题面,可惜并没有能力。
题目描述
给你三个正整数, a , m , b a,m,b a,m,b,你需要求: a b m o d m a^b \bmod m abmodm
输入格式
一行三个整数, a , m , b a,m,b a,m,b
输出格式
一个整数表示答案
输入输出样例 #1
输入 #1
2 7 4
输出 #1
2
输入输出样例 #2
输入 #2
998244353 12345 98765472103312450233333333333
输出 #2
5333
说明/提示
注意输入格式, a , m , b a,m,b a,m,b 依次代表的是底数、模数和次数
【样例
1
1
1 解释】
2
4
m
o
d
7
=
2
2^4 \bmod 7 = 2
24mod7=2
【数据范围】
对于
100
%
100\%
100% 的数据,
1
≤
a
≤
10
9
1\le a \le 10^9
1≤a≤109,
1
≤
b
≤
10
20000000
,
1
≤
m
≤
10
8
1\le b \le 10^{20000000},1\le m \le 10^8
1≤b≤1020000000,1≤m≤108。
solution
由于b很大,不能用基本数据类型表示,用快速幂会超时,可以用拓展欧拉定理计算。
- 欧拉定理: a ϕ ( m ) ≡ 1 m o d m ,其中 g c d ( a , m ) = 1 a^{\phi(m)} \equiv 1 \bmod m, 其中 gcd(a, m) = 1 aϕ(m)≡1modm,其中gcd(a,m)=1
- 由于本题没有给定 g c d ( a , m ) = 1 gcd(a, m) = 1 gcd(a,m)=1 , 可以用拓展欧拉定理
-
a
b
=
{
a
b
b
<
ϕ
(
m
)
a
b
m
o
d
ϕ
(
m
)
+
ϕ
(
m
)
b
≥
ϕ
(
m
)
a^b= \begin{cases} a^b & \text{ $ b \lt \phi(m) $ } \\ a^{b \bmod \phi(m) + \phi(m)}& \text{ $ b \ge \phi(m) $ } \end{cases}
ab={ababmodϕ(m)+ϕ(m) b<ϕ(m) b≥ϕ(m)
证明过程略显复杂,省略(以后有时间补上),具体做法。 - 1 计算 ϕ ( m ) \phi(m) ϕ(m)
- 2 逐位处理大整数 b 如果超过 ϕ ( m ) \phi(m) ϕ(m) 则对 ϕ ( m ) \phi(m) ϕ(m) 取余数。
- 3 对于第二种情况,取余数结果加上 ϕ ( m ) \phi(m) ϕ(m),最后用快速幂计算
代码
#include "cstring"
#include "string"
#include "algorithm"
#include "iostream"
#include "vector"
#include "unordered_set"
#include "unordered_map"
#include "bitset"
#include "queue"
#include "set"
using namespace std;
/*
* P5091 【模板】扩展欧拉定理
* 朴素做法:
* 1 实现 pow(x, n) n <= 10;
* 2 直接处理十进制的每一位
* 有3个样例tle,82pts
* 扩展欧拉定理:
* b >= phi(m) 时
* a^b = a^b mod phi(m) + phi(m)
*/
const int N = 2e7 + 5, M = 2e6, INF = 1e9, MOD = 0;
typedef long long ll;
ll m, a, s, phi = 1;
ll Pow(ll x, ll n) {
ll y = 1;
while (n) {
if (n & 1) y = y * x % m;
x = x * x % m;
n >>= 1;
}
return y;
}
int main() {
scanf("%lld%lld", &a, &m);
ll mm = m;
for (int i = 2; i * i <= mm; i++) {
int c = 0;
while (mm % i == 0) {
mm /= i;
phi *= i;
c++;
}
if (c) phi /= i, phi *= i - 1;
}
if (mm > 1) phi *= mm - 1;
getchar(); // 空格
int c, flag = 0;
while ((c = getchar())) {
if(c > '9' || c < '0') break;
s = s * 10 + c - '0';
if (s >= phi) {
s %= phi;
flag = 1;
}
}
if (flag) s += phi;
cout << Pow(a, s) << endl;
return 0;
}