洛谷 P5091 【模板】扩展欧拉定理-提高+/省选-

P5091 【模板】扩展欧拉定理

题目背景

出题人也想写有趣的题面,可惜并没有能力。

题目描述

给你三个正整数, a , m , b a,m,b a,m,b,你需要求: a b   m o d   m a^b \bmod m abmodm

输入格式

一行三个整数, a , m , b a,m,b a,m,b

输出格式

一个整数表示答案

输入输出样例 #1

输入 #1

2 7 4

输出 #1

2

输入输出样例 #2

输入 #2

998244353 12345 98765472103312450233333333333

输出 #2

5333

说明/提示

注意输入格式, a , m , b a,m,b a,m,b 依次代表的是底数、模数和次数

【样例 1 1 1 解释】
2 4   m o d   7 = 2 2^4 \bmod 7 = 2 24mod7=2

【数据范围】
对于 100 % 100\% 100% 的数据, 1 ≤ a ≤ 10 9 1\le a \le 10^9 1a109 1 ≤ b ≤ 10 20000000 , 1 ≤ m ≤ 10 8 1\le b \le 10^{20000000},1\le m \le 10^8 1b10200000001m108

solution

由于b很大,不能用基本数据类型表示,用快速幂会超时,可以用拓展欧拉定理计算。

  • 欧拉定理: a ϕ ( m ) ≡ 1   m o d   m ,其中 g c d ( a , m ) = 1 a^{\phi(m)} \equiv 1 \bmod m, 其中 gcd(a, m) = 1 aϕ(m)1modm,其中gcd(a,m)=1
  • 由于本题没有给定 g c d ( a , m ) = 1 gcd(a, m) = 1 gcd(a,m)=1 , 可以用拓展欧拉定理
  • a b = { a b   b < ϕ ( m )   a b   m o d   ϕ ( m ) + ϕ ( m )   b ≥ ϕ ( m )   a^b= \begin{cases} a^b & \text{ $ b \lt \phi(m) $ } \\ a^{b \bmod \phi(m) + \phi(m)}& \text{ $ b \ge \phi(m) $ } \end{cases} ab={ababmodϕ(m)+ϕ(m) b<ϕ(m)  bϕ(m) 
    证明过程略显复杂,省略(以后有时间补上),具体做法。
  • 1 计算 ϕ ( m ) \phi(m) ϕ(m)
  • 2 逐位处理大整数 b 如果超过 ϕ ( m ) \phi(m) ϕ(m) 则对 ϕ ( m ) \phi(m) ϕ(m) 取余数。
  • 3 对于第二种情况,取余数结果加上 ϕ ( m ) \phi(m) ϕ(m),最后用快速幂计算

代码

#include "cstring"
#include "string"
#include "algorithm"
#include "iostream"
#include "vector"
#include "unordered_set"
#include "unordered_map"
#include "bitset"
#include "queue"
#include "set"

using namespace std;

/*
 *  P5091 【模板】扩展欧拉定理
 *  朴素做法:
 *  1 实现 pow(x, n) n <= 10;
 *  2 直接处理十进制的每一位
 *  有3个样例tle,82pts
 *  扩展欧拉定理:
 *  b >= phi(m) 时
 *  a^b = a^b mod phi(m) + phi(m)
 */

const int N = 2e7 + 5, M = 2e6, INF = 1e9, MOD = 0;
typedef long long ll;

ll m, a, s, phi = 1;

ll Pow(ll x, ll n) {
    ll y = 1;
    while (n) {
        if (n & 1) y = y * x % m;
        x = x * x % m;
        n >>= 1;
    }
    return y;
}

int main() {
    scanf("%lld%lld", &a, &m);
    ll mm = m;

    for (int i = 2; i * i <= mm; i++) {
        int c = 0;
        while (mm % i == 0) {
            mm /= i;
            phi *= i;
            c++;
        }
        if (c) phi /= i, phi *= i - 1;
    }
    if (mm > 1) phi *= mm - 1;


    getchar(); // 空格
    int c, flag = 0;
    while ((c = getchar())) {
        if(c > '9' || c < '0') break;
        s = s * 10 + c - '0';
        if (s >= phi) {
            s %= phi;
            flag = 1;
        }
    }

    if (flag) s += phi;
    cout << Pow(a, s) << endl;
    return 0;
}

结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智趣代码实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值