氮化镓充电器

随着手机屏幕增大和处理器性能提升,对充电器的体积和效率提出了更高要求。本文介绍了氮化镓(GaN)充电器的优势:使用GaN材质可以提高开关频率,使充电器体积减小一半同时保持高效散热。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

氮化镓充电器

一.何为氮化镓

在科普氮化镓之前,我们先要去了解一下关于电流的普通知识。

       众所周知,随着手机屏幕的增大和处理器性能的增加,对手机本身的电量储备和充电时间也提出了高要求。如何“又快又好”成为了手机续航的重要问题。

有需求就要有研发,在过去的几年内,高通、华为、OPPO等厂家分别推出了自己的充电协议,并且不断迭代。就连一贯“五福一安”的苹果,也在iPhone 8上支持了PD快充协议,充电速度的问题,暂时得到了解决。

二.充电设备的体积

顾名思义,如果充电功率等同的情况下,体积越大的充电器,散热必然就越好。如果一个充电器不做好安全协议就贸然缩小体积,就会有火灾等隐患。

而更深层的原因,则是充电器的结构。手机充电器功率还没有那么高的时候,由于结构简单,采用的普遍是反激拓扑结构。而这其中,最重要的,就是FET的开关频率。

FET(场效应晶体管),就是利用控制输入回路的电场效应来控制输出回路电流的一种半导体器件。我们常常听说的FinFET工艺就是FET中的一种,它将传统晶体管的平面状态变成了鱼鳍状(Fin),大大提高载流子的迁移效率。

      对于普通的充电器而言,用上百kHz的开关频率切换FET的开关状态就已经足够。而且开关频率越高,体积就会越小。但问题在于,盲目提高开关频率,很容易导致电源变热,发生危险。而人们为了解决这个问题,采取了很多办法:增加漏感能量的电容、实现零电压开启FET(ZVS技术)。而氮化镓,就是在这个时候出场。传统的FET都是基于硅制造的,但相比硅材料,氮化镓(GaN)是一种极稳定的化合物,它的坚硬性好,熔点高,电离度高。而如果我们能用氮化镓材质的FET去取代硅材料,那么氮化镓电离性好、熔点高的优势,可以让开关频率变得更高,将体积缩小一半左右。

总结来看,氮化镓相比传统的硅材料,有三个显而易见的优势:

  1. 禁带宽度大、导热率高,能够承载更高的能量密度,可靠性更高;
  2. 较大禁带宽度和绝缘破坏电场,使得器件导通电阻减少,有利于提升器件整体的能效;
  3. 电子饱和速度快,以及较高的载流子迁移率,可让器件高速地工作。
氮化镓(GaN)是一种高电子迁移率晶体管(HEMT),意味着GaN器件的临界电场强度大于硅。对于相同的片上电阻和击穿电压,GaN的尺寸更小。GaN还具有极快的开关速度和优异的反向恢复性能。 一、氮化镓(GaN)器件介绍:GaN器件分为两种类型: 耗尽型:耗尽型GaN晶体管常态下是导通的,为了使它截止必须在源漏之间加一个负电压。 增强型:增强型GaN晶体管常态下是截止的,为了使它导通必须在源漏之间加一个正电压。 GaN VS MOSFET: 他们的关键参数都是导通电阻和击穿电压。GaN的导通电阻非常低,这使得静态功耗显著降低,提高了效率。GaN FET的结构使其输入电容非常低,提高了开关速度。意味着GaN具有更高的效率,并可以使用更少的电磁学和被动元件。 二、手机快充介绍:能在极短的时间内(0.5-1Hr)使手机电池达到或接近完全充电状态的一种充电方法。 实现手机快速充电方法: 1.电压不变,提高电流; 2.电流不变,提升电压; 3.电压、电流均提高。 手机快速充电技术目前分为“高压小电流快充”和“低压大电流快充”两种方案。VOOC闪充和Dash闪充属于后者“低压大电流快速充电”。快速充电对手机电池的寿命没有影响,现在的电池都可以承受大电流。 三、氮化镓(GaN)快充:氮化镓(GaN)快充在已有的快充技术上通过改用氮化镓(GaN)核心器件,将手机快速充电器做到功率更大、体积更小、充电速度更快。 氮化镓(GaN)快充方案包含两个部分,充电器部分和电源管理部分 充电器部分:充电管理芯片根据锂电池充电过程的各个阶段的电器特性,向充电器发出指令,通知充电器改变充电电压和电流,而充电器接收到来自充电管理系统的需求,实时调整充电器的输出参数,配合充电管理系统实现快速充电。 电源管理部分:相应的芯片置于移动智能终端内,有独立的电源管理芯片,也有的直接集成在手机套片中,电源管理芯片对锂电池的整个充电过程实施管理和监控,包含了复杂的处理算法,锂电池充电包括几个阶段:预充阶段、恒流充电阶段,恒压充电阶段、涓流充电阶段。 转载自唯样电子资讯。
内容概要:本文介绍了基于SMA-BP黏菌优化算法优化反向传播神经网络(BP)进行多变量回归预测的项目实例。项目旨在通过SMA优化BP神经网络的权重和阈值,解决BP神经网络易陷入局部最优、收敛速度慢及参数调优困难等问题。SMA算法模拟黏菌寻找食物的行为,具备优秀的全局搜索能力,能有效提高模型的预测准确性和训练效率。项目涵盖了数据预处理、模型设计、算法实现、性能验证等环节,适用于多变量非线性数据的建模和预测。; 适合人群:具备一定机器学习基础,特别是对神经网络和优化算法有一定了解的研发人员、数据科学家和研究人员。; 使用场景及目标:① 提升多变量回归模型的预测准确性,特别是在工业过程控制、金融风险管理等领域;② 加速神经网络训练过程,减少迭代次数和训练时间;③ 提高模型的稳定性和泛化能力,确保模型在不同数据集上均能保持良好表现;④ 推动智能优化算法与深度学习的融合创新,促进多领域复杂数据分析能力的提升。; 其他说明:项目采用Python实现,包含详细的代码示例和注释,便于理解和二次开发。模型架构由数据预处理模块、基于SMA优化的BP神经网络训练模块以及模型预测与评估模块组成,各模块接口清晰,便于扩展和维护。此外,项目还提供了多种评价指标和可视化分析方法,确保实验结果科学可信。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值