codeforces D.MADMAX 动态规划、记忆化搜索

本文介绍了一种基于动态规划解决DAG图上两人博弈问题的方法,通过定义状态dp[i][j][c]来判断从当前节点出发的玩家是否能够赢得游戏。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

给出一个DAG,每条边上有权重(权重是小写字母的ASCII码),现在两位同学A和B分别位于某两点上(可以相同),其中A和B轮流走,但是每人所走的边权不能变小,走到不能走为止就输。
A先走,询问最后谁会赢。


题解

比较明显是一个DP,定义dp[i][j][c]表示轮到i点的人走,另一个人在j点,下一次要走的边的权重必须>=c,i点的人是否能赢

递推方程

dp[i][j][c]=(!dp[j][nex1][Wi,nex1])or(!dp[j][nex2][Wi,nex2])or...dp[i][j][c] = (!dp[j][nex_1][W_i,nex_1]) or (!dp[j][nex_2][W_i,nex_2])or...dp[i][j][c]=(!dp[j][nex1][Wi,nex1])or(!dp[j][nex2][Wi,nex2])or...

也就是说只要有一个可以转移到的状态,使得该状态是输态,那么必赢。


代码

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std;
int n,m;
int G[111][111];
bool dp[111][111][30];
int outdeg[111];
int vis[111][111][30];
bool dfs(int u,int v,int c){
    if(vis[u][v][c]) 
        return dp[u][v][c];
    bool f = 0;
    for(int nex = 1;nex <= n;++nex){
        if(!G[u][nex] || G[u][nex] < c) continue;
        f = f || (!dfs(v,nex,G[u][nex]));
    }
    vis[u][v][c] = 1;
    return dp[u][v][c] = f;
}
int main(){
    cin>>n>>m;
    for(int i = 0;i < m;++i){
        int u,v;
        char c;
        scanf(" %d %d %c",&u,&v,&c);
        G[u][v] = c-'a'+1;
    }
    for(int i = 1;i <= n;++i){
        for(int j = 1;j <= n;++j){
            if(dfs(i,j,0))
                putchar('A');
            else
                putchar('B');
        }
        puts("");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值