贪心算法的高逼格应用——Huffman编码

14天阅读挑战赛
努力是为了不平庸~
 

Huffman编码

        在计算机的世界里,通常的编码方法有固定长度编码和不等长度编码两种。采用不等长度编码能使总码长度较短。
        Huffman编码利用字符的使用频率来编码,是不等长编码方法,它使得经常使用的字符编码较短,不常使用的字符编码较长。这便使编码之后的字符串的平均长度、期望值降低,从而达到无损压缩数据的目的。
        例如,在英文中,e的出现机率最高,而z的出现概率则最低。当利用Huffman编码对一篇英文进行压缩时,e极有可能用一个比特来表示,而z则可能花去25个比特(不是26)。用普通的表示方法时,每个英文字母均占用一个字节,即8个比特。二者相比,e使用了一般编码的1/8的长度,z则使用了3倍多。倘若我们能实现对于英文中各个字母出现概率的较准确的估算,就可以大幅度提高无损压缩的比例。
        除了使编码尽可能短,不等长编码还需解决另外一个问题,即不能有二义性,例如,ABCD四个字符如果编码如下:

    A:0
    B:1
    C:01
    D:10

那么现在有一列数0110,该怎样翻译呢? 是翻译为ABBA,ABD,CBA,还是CD? 那么如何消除二义性呢? 解决的办法是任何一个字符的编码不能是另一个字符编码的前缀,即前缀码特性。
        哈夫曼编码很好地解决了上述关键问题,被广泛应用于数据压缩,尤其是远距离通信和大容量数据存储方面。

算法详解

        Huffman编码的基本思想是以字符的使用频率作为权值构建一棵Huffman树,然后利用Huffman树对字符进行编码。构造一棵Huffman树,是将所要编码的字符作为叶子结点,该字符在文件中的使用频率作为叶子结点的权值,以自底向上的方式,通过n-1次的“合并”运算后构造出的一棵树,核心思想是权值越大的叶子离根越近。

回到本文题目,那贪心算法和Huffman编码有什么关系呢?

Huffman算法在构建Huffman树时采用的就是贪心策略,每次从树的集合中取出没有双亲且权值最小的两棵树作为左右子树,构造一棵新树,新树根节点的权值为其左右孩子结点权值之和,将新树插入到树的集合中,求解步骤如下。
(1) 确定合适的数据结构。编写程序前需要考虑的情况有:
● Huffman树

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肥猪猪爸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值