Gumbel softmax

本文详细介绍了PyTorch中Gumbel-Softmax函数的使用方法,包括参数解释和示例代码,展示了如何使用Gumbel-Softmax进行软分类采样和硬分类采样的直穿技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://www.cnblogs.com/yi-xia/p/12468957.html
https://pytorch.org/docs/stable/nn.functional.html#gumbel-softmax
https://www.zhihu.com/question/62631725/answer/201338234

torch.nn.functional.gumbel_softmax(logits, tau=1, hard=False, eps=1e-10, dim=-1)

example:

>>> logits = torch.randn(20, 32)
>>> # Sample soft categorical using reparametrization trick:
>>> F.gumbel_softmax(logits, tau=1, hard=False)
>>> # Sample hard categorical using "Straight-through" trick:
>>> F.gumbel_softmax(logits, tau=1, hard=True)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Enzo 想砸电脑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值