Spring AI 与 Ollama 的协同作用:利用 LLM 转变本地 AI 交互
即使在当今时代,Java 和 Spring 仍引领着大多数开发社区,而 Python 则是 AI 领域(机器学习或生成式 AI)的主要武器。如果 Java 开发人员不愿意使用 Python,他们该如何利用或使用 LLM?这就是 Spring AI 弥补差距的地方。当我阅读 Spring AI 门户时,我更想做的是创建 Spring 应用程序和可以在本地运行的 LLM 之间的集成。这让所有 Java 开发人员都能够开发 AI 驱动的应用程序。
议程
在本文中,我们将了解如何使用 Ollama 在本地运行 LLM,并将考虑四个方面。
- 在本地安装并运行 Ollama 和 LLM
- 创建SpringAI项目并详细查看项目配置。
- 访问本地嵌入。
- 访问本地聊天模型。
安装并运行 Ollama
导航至https://ollama.com/download下载适用于特定操作系统的 ollama。
下载 ollama 后,打开终端并输入以下命令来提取 LLM 并在本地运行它们。您可以通过导航到Models
上图中的菜单来检查可用的模型。有关更多说明,请转到 Ollama 文档并检查可用的不同选项。
ollama run llama2 # 拉动 llama2 LLM 模型
ollama run mistral # 拉动并运行 mistral LLM
创建 Spring AI 项目
如果您使用任何 IDE(我的情况是 IntelliJ)或基于 Web 的,Spring Intializr
那么您现在可以看到可以直接从中添加 AI 依赖项Spring Intializr
。在这种情况下,我们将添加Ollama
。在执行此步骤之前,请确保您已按照步骤 1 安装ollama
并在本地运行。
一旦您填写了所有必需的详细信息,项目的脚手架将如下所示。
让我们深入application.yaml
了解一下不同的项目配置ollama.
一些配置的解释
spring:
ai:
ollama:
嵌入:
模型: “llama2”
选项:
温度: 0.