(完整版)从零开始教你玩转ComfyUI-保姆级部署教程-手把手带你ComfyUI工作流搭建

第一节:认识ComfyUI并安装

本教程专为初学者设计,详细介绍了 2024 年最新版的SD ComfyUI的使用方法。通过逐步指导,让你无需任何基础,快速学会并使用这一强大的AI绘图工具。

1、什么是comfyui

ComfyUI就像拥有一支神奇魔杖,可以轻松创造出令人惊叹的AI生成艺术。从本质上讲,ComfyUI是构建在Stable Diffusion之上的基于节点的图形用户界面(GUI),而Stable Diffusion是一种最先进的深度学习模型,可以根据文本描述生成图像。 但ComfyUI真正特别之处在于,它如何让像你这样的艺术家释放创造力,将你最疯狂的想法变为现实。

想象一下有一块数字画布,你可以通过连接不同的节点来构建自己独特的图像生成工作流,每个节点代表一个特定的功能或操作。 就像为你的AI生成杰作构建一个视觉食谱!

2、ComfyUI VS. WebUI

WebUI是Stable Diffusion的默认GUI。让我们对比一下ComfyUI的优缺点:

✅ 使用ComfyUI的好处:

  1. 轻量级: 运行速度快,效率高。
  2. 灵活性: 高度可配置以满足你的需求。
  3. 透明度: 数据流可见,易于理解。
  4. 易于分享: 每个文件代表一个可重现的工作流。
  5. 适合原型开发: 使用图形界面而不是编码来创建原型。

❌ 使用ComfyUI的缺点:

  1. 界面不一致: 每个工作流可能有不同的节点布局。
  2. 操作门槛较高:由于ComfyUI采用节点式的工作流,对于初学者来说可能需要一段时间来熟悉和掌握。
  3. 生态相对较小:尽管ComfyUI的基本功能齐全,但在插件和扩展工具方面,其生态可能不如webui丰富。不够现在很多插件也都是先支持ComfyUI了。这个后续的生态会不断完善,不是什么大问题

3、ComfyUI 的硬件配置要求

组件 要求
GPU 显存至少4GB以上,推荐使用 NVIDIA 显卡,建议使用 RTX3060 以上显卡
显存小于3GB的GPU可通过–lowvram选项运行,但性能可能下降。
CPU 支持在CPU上运行,但速度较慢,使用–cpu选项。
内存 建议系统内存至少8GB。
存储空间 非常建议使用固态硬盘来加快模型文件的加载运行速度,建议至少40GB以上的硬盘空间。

4、ComfyUI 的安装方法

这边推荐和WebUI一样使用秋叶大佬的一键整合包安装ComfyUI非常简单

这个是秋叶大佬分享的整合包下载链接

【下载链接】

网盘:https://pan.quark.cn/s/64b808baa960

如果不想使用网盘也可以扫码进群获取完整的安装包

下载压缩包

image.png

解压整合包文件

解压到你想要安装 ComfyUI 的本地目录。

启动 A绘图启动器

这一步主要查看 A绘图启动器 是否能正常运行,解压后的文件夹中找到 A绘图启动器.exe文件,双击即可启动秋叶的ComfyUI整合包,启动后应该会自动根据你的系统语言进行显示。

image.png

打开后是这样的

image.png

在设置中可以修改我们的语言

image.png

下载了模型的小伙伴记得把模型放在这个文件夹内

image.png

我们点击启动,能看到这个页面就是安装成功啦

image.png

ComfyUI各类模型安装路径,如何与WebUI共享模型

进入到 ComfyUI 根目录,找到这个「Models」文件夹,双击进去。

image.png

进来之后你就会看到以模型名称命名的文件夹,如 Checkpoints(大模型)、Loras、controlnet 、vae等,我们只需要进入对应的文件夹,把正确的模型安装进去即可。

image.png

如果你有使用过WebUI并且有下载过模型,我们就可以把WebUI下载过的模型共享给ComfyUI

节省我们的空间,

第一步

同样,我们还是打开 ComfyUI 根目录,找到这个「extra_model_paths.yaml.example」文件:

image.png

第二步

打开刚刚修改后缀的文件,修改路径,把base_path改成你sdwebui的安装路径

image.png

第三步

再次启动 comfyUI 就可以看到已经可以使用 WebUI 中的模型

image.png

初次运行ComfyUI,一启动便会看到一个预设的工作流程,这通常是一个入门级的文本到图像的工作流。让我们借此机会对构成这个工作流的基础节点进行一番简要说明。

image.png

在ComfyUI中,节点和节点之间的链接以相同颜色链接即可,熟悉常用工作流之后,大概就能明白节点的链接逻辑了

1、K采样器

K采样器可以类比为一个“厨师”,是SD出图流程中的核心节点,所有节点载入,数据输入,参数配置,最后都会汇总到K采样器,它会结合载入的模型,提示词的输入以及Latent输入,进行采样计算,输出得到最终图像

  • input model:从模型加载节点接收的Unet模型。
  • positive:由CLIP模型编码的正向提示词。
  • neg
### 关于 LiblibAI 和 ComfyUI 的使用教程 #### LiblibAI 平台上的 ComfyUI 使用方法 LiblibAI 提供了一个直观的工作流界面用于部署和操作 ComfyUI。通过双击工作区中的空白区域,可以便捷地添加各类组件,比如 LoRA 或 ControlNet 模型[^4]。 ```python # 示例 Python 代码片段展示如何连接到 LiblibAI API (假设存在这样的API接口) import liblibai_api client = liblibai_api.Client(api_key='your_api_key') workflow_id = client.create_workflow('ComfyUI Workflow') component_ids = [ client.add_component(workflow_id, 'lora'), client.add_component(workflow_id, 'controlnet') ] for cid in component_ids: print(f'Component {cid} added successfully.') ``` #### 安装与配置 ComfyUI 对于希望本地安装并配置 ComfyUI 的用户来说,有两种主要的方式可以选择: - **秋叶版安装包**:适合希望通过预打包环境快速上手的新手用户。该版本包含了详细的错误解决指南,帮助克服可能遇到的技术难题[^1]。 - **原生版安装包**:适用于有一定编程经验和技术背景的开发者。如果Python依赖出现问题,则可以通过执行 `update_comfyui_and_python_dependencies.bat` 脚本来修复问题[^2]。 #### 插件管理 当涉及到自定义节点(custom nodes)如 `ComfyUI-AnimateDiff-Evolved` 时,需要注意这些额外功能可能会来兼容性挑战。如果不慎引入了不稳定的插件,可以直接从 `custom_nodes` 文件夹中移除相应文件夹来解决问题[^3]。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值