从前序和中序遍历序列构造二叉树 (Python)

这篇博客介绍了如何利用递归根据给定的前序遍历和中序遍历序列重建一棵二叉树。通过创建一个辅助字典加速中序遍历中根节点的定位,然后递归地构建左子树和右子树,最终生成完整的二叉树结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LeetCode链接

递归

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
        '''
        前序遍历 [ 根节点, [左子树的前序遍历结果], [右子树的前序遍历结果] ]
        中序遍历 [ [左子树的中序遍历结果], 根节点, [右子树的中序遍历结果] ]
        根据前序遍历 可以得到 根节点
        在中序遍历中定位根节点 可以得到树的左右节点数量
        '''
        # 使用dict 加速定位
        inorder_dict = {item: i for i, item in enumerate(inorder)}
        def build(pre_left_i, pre_right_i, in_left_i, in_right_i):
            # 正常情况 left <= right
            if pre_left_i > pre_right_i:
                return None
            # 前序的left 即为根
            pre_root_i = pre_left_i
            root_val = preorder[pre_root_i]
            # 找到 中序遍历根节点的位置
            in_root_i = inorder_dict[root_val]
            # 根据中序遍历 计算左子树位置 不包含根节点
            left_subtree_size = in_root_i - in_left_i
            root = TreeNode(preorder[pre_root_i])
            # 当前节点的左节点为 左子树的根节点
            root.left = build(pre_left_i + 1, pre_left_i + left_subtree_size, in_left_i, in_root_i - 1)
            # 同上 当前节点的右节点为 右子树的根节点
            root.right = build(pre_left_i + left_subtree_size + 1, pre_right_i, in_root_i + 1, in_right_i)
            # 返回根节点
            return root
        n = len(preorder)
        return build(0, n - 1, 0, n - 1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值