
关系抽取
文章平均质量分 94
陈振斌
生命不息,BUG不止。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【关系抽取】Three Sentences Are All You Need Local Path Enhanced Document Relation Extractio(文档级别)
Three Sentences Are All You Need Local Path Enhanced Document Relation Extraction论文地址:https://arxiv.org/abs/2106.01793代码地址:https://github.com/AndrewZhe/Three-Sentences-Are-All-You-NeedAbstract本文属于Document-level Relation Extraction任务,和句子级关系抽取任务不一样的是:用原创 2021-07-18 22:14:07 · 984 阅读 · 0 评论 -
【联合抽取】Entity-Relation Extraction as Multi-turn Question Answering(ACL2019)
【联合抽取】Entity-Relation Extraction as Multi-turn Question Answering(ACL2019)论文地址:https://arxiv.org/abs/1905.05529v4论文代码:https://github.com/ShannonAI/Entity-Relation-As-Multi-Turn-QAAbstract本文提出将关系抽取任务看作一个多轮QA问题,其中有以下的好处三个好处:问题序列(Query)能对重要的信息更好地编码;QA能原创 2021-07-12 03:41:26 · 1366 阅读 · 0 评论 -
An Improved Baseline for Sentence-level Relation Extraction
论文地址: An Improved Baseline for Sentence-level Relation ExtractionAbstract & Contribution目前的句子级的关系抽取任务效果,还有远远达不到人工的效果。本文反思已有模型并指出两个被忽视的方面:关系实例包含多个方面的实体信息,如实体名字、范围、类型;已有的模型并没有将其作为输入。由于预定义的知识本体还具有一定的限制,所以不可避免地有一些关系并不在知识本体中并被标注为NA类别,但是实际上他们可能有更多样的语义.原创 2021-05-29 21:19:07 · 1197 阅读 · 0 评论 -
【综述】A Review on Semi-Supervised Relation Extraction
本文主要总结和对比了三种典型的基于甚于深度学习和元学习的半监督关系抽取方法:self-ensembling:该方法在有干扰的情况下被迫保持一致性,但将面临不足进行监督学习;self-trainning:该方法迭代地生成加标签数据并且重新训练自身dual learning:该方法利用了一个基础方法和一个双重方法给予一个多向反馈1 Introduction任务定义:关系抽取则是自动化抽取文本中实体之间关系的。为了减少标注的消耗,提升技术显得非常的重要,如主动学习、远程监督、半监督学习、无监督学习原创 2021-05-28 01:31:00 · 765 阅读 · 0 评论 -
【2021最新综述】Deep Neural Approaches to Relation Triplets Extraction:A Comprehensive Survey
【2021最新综述】Deep Neural Approaches to Relation Triplets Extraction:A Comprehensive Survey1 Introduction2 Task Description3 Scope of this survey4 Challenges of Dataset Annotation5 Relation Extraction Datasets6 Evaluation Metrics7 Relation Extraction Models(前方原创 2021-05-18 11:01:46 · 1299 阅读 · 0 评论