
大数据分析
文章平均质量分 71
Redash中文社区
现代数据栈MDS中文社区
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
自助式分析是数据组织的一种状态
究竟什么是自助式分析?为什么真正的自助式分析难以实现?原创 2023-03-27 10:25:37 · 476 阅读 · 1 评论 -
现代数据栈MDS应用落地介绍—Bloom AI数据交付平台,实时AI驱动业务
Bloom AI认为业务团队的当前商业智能(BI)流程是分散的、复杂的和技术性的。它只关注数据智能,不考虑其他形式的信息或隐性知识。结果是 60-80% 的数据和分析没有用于决策。原创 2023-03-22 08:10:10 · 349 阅读 · 0 评论 -
现代数据栈MDS应用落地介绍—Clearbit营销数据激活平台
现代数据栈MDS的出现使得中小企业低成本获得大数据处理能力成为可能,技术的进步使得各种基于MDS的大数据应用如雨后春笋般涌现,最后一公里的大数据应用在企业的普及,反过来也促使MDS技术平台快速发展。额外的表单字段通常意味着更少的合格潜在客户。获取公司关心的每家公司和联系人的更全面背景信息,以推动大规模洞察、转化和制胜。一致的上下文可让您实时评分和路由潜在客户,以便您可以告别不适合、错误路由的潜在客户和手动排序。使用您的 CRM 数据、网站数据和 100+ 公司、技术和员工属性,通过精确的受众推动更多管道。原创 2023-03-20 14:30:47 · 446 阅读 · 0 评论 -
现代数据栈MDS应用落地介绍—DataChannel数字营销分析
推出的数字化营销和分析产品,让营销团队能够在需要时快速访问来自所有广告平台和营销自动化工具的新数据。通过与所有关键营销平台的集成,获取数据变得轻而易举。使用高质量数据超个性化您的广告投放,跨营销平台运行超个性化的营销活动。在一个统一平台管理您的细分和受众。业务人员在不寻求数据工程师帮助下就能进行。现代数据栈MDS的出现使得中小企业低成本获得大数据处理能力成为可能,技术的进步使得各种基于MDS的大数据应用如雨后春笋般涌现,最后一公里的大数据应用在企业的普及,反过来也促使MDS技术平台快速发展。原创 2023-03-17 10:30:06 · 228 阅读 · 0 评论 -
现代数据栈MDS的6个趋势
他说,在IT运营管理领域,这涉及分析数据,包括指标,事件,日志,拓扑,事件和更改,并且需要开放的平台,并且可以集成来自无数工具和技术的数据,并补充说,堆栈还需要支持混合客户来自本地数据中心基础设施和应用程序以及多个云资产的数据。“人们,普通商业用户,使用AI / ML做非凡事情的方式,将改变未来企业的运营方式,”他说,并补充说谷歌正在寻找进一步民主化人工智能和机器学习的方法,以便那些没有数据背景的人可以通过简单的电子表格访问它。我们在谷歌有备份,在微软有其他备份,这种互连正在变得正常,“齐马说。原创 2023-03-16 13:43:16 · 402 阅读 · 0 评论 -
DBT项目结构
dbt 项目告知 dbt 项目的上下文以及如何转换数据(构建数据集)。根据设计,dbt 强制执行 dbt 项目的顶级结构,如文件、目录、目录等。设置与数据平台的连接后,您可以在 dbt Cloud 中初始化新项目并开始开发。每个模型都位于单个文件中,并包含将原始数据转换为可供分析的数据集的逻辑,或者更常见的是,是此类转换的中间步骤。一种在项目中组织分析 SQL 查询的方法,例如 QuickBooks 中的总账。在项目初始化期间,dbt 会在项目目录中创建示例模型文件,以帮助您快速开始开发。原创 2023-03-15 13:52:26 · 473 阅读 · 0 评论 -
现代数据栈MDS兴起
这就是您的数据来源:它可以是您的生产数据库(例如PostgreSQL),Web服务器的日志,或者第三方应用程序,如Stripe,Zendesk或您正在使用的任何其他产品。例如,在传统的数据堆栈中,想要访问过产品某个区域的客户列表的客户经理需要友好的工程师或分析师的帮助来为他们“提取”数据。通常,现代数据堆栈基于基于云的服务构建,并且越来越多地包含低代码和无代码工具,使用户能够探索和使用数据。通常,这是作为技术和服务的列表共享的,但是给定堆栈背后的工作和理论比简单格式所允许的要多方面得多。原创 2023-03-15 11:38:18 · 446 阅读 · 0 评论