Python膨胀操作

该博客介绍了如何利用OpenCV库对灰度图像进行二值化处理,通过Otsu's阈值方法确定最佳阈值。接着,它展示了如何应用矩形结构元素对二值图像进行膨胀操作,以扩大图像中的白色区域。这些步骤在图像处理中常用于文本检测和噪声消除。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

def dilate_demo(gray):
    ret, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 15))#定义结构元素的形状和大小
    dst = cv2.dilate(binary, kernel)#膨胀操作
    return dst

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值