0 时间序列分析步骤
1. 用pandas处理时序数据
2. 检验时序数据的平稳性
3. 将时序数据平稳化
4. 确定p.d.q值
5. 应用ARIMA模型对时序数据进行预测
其中ARIMA模型是Autoregressive Integrated Moving Average model,差分整合移动平均自回归模型,只适用于单一变量的数据序列模型的预测。
ARIMA(p,d,q)中,AR是"自回归",p为自回归项数;MA为"滑动平均",q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。
先看一下我原始数据的样子,我只想对result进行数据序列分析。
数据是10年到19年的数据,每隔7天为一个样本
1 将数据转化成为时序数据
import pandas as pd
import numpy as np
import datetime
import matplotlib.pyplot as plt
#读取数据
data = pd.read_csv('factor.csv')
data.index = pd.to_datetime(data['date'])
myts = data.result
myts.head()
先将时间序列数据图片展示
def draw_ts(timeseries):
f = plt.figure(facecolor='white')
timeseries.plot(figsize=(12,8),color='blue')
plt.show()
draw_ts(myts)