时间序列分析-ARIMA的python实现

本文介绍了如何使用Python进行时间序列分析,重点是ARIMA模型的实现步骤,包括数据预处理、平稳性检测、差分、参数确定及模型预测。通过对10年到19年每隔7天的数据进行分析,尝试找到最佳的(p, d, q)参数,并讨论了预测效果和适用场景。" 118683926,1213904,使用QXlsx在Qt中读写Excel文件教程,"['Qt开发', 'QXlsx库', '文件操作', 'Excel处理']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 时间序列分析步骤

1.  用pandas处理时序数据

2. 检验时序数据的平稳性

3. 将时序数据平稳化

4. 确定p.d.q值

5. 应用ARIMA模型对时序数据进行预测

其中ARIMA模型是Autoregressive Integrated Moving Average model,差分整合移动平均自回归模型,只适用于单一变量的数据序列模型的预测。

ARIMA(p,d,q)中,AR是"自回归",p为自回归项数;MA为"滑动平均",q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。

先看一下我原始数据的样子,我只想对result进行数据序列分析。

数据是10年到19年的数据,每隔7天为一个样本

1 将数据转化成为时序数据

import pandas as pd
import numpy as np
import datetime
import matplotlib.pyplot as plt

#读取数据
data = pd.read_csv('factor.csv')
data.index = pd.to_datetime(data['date'])
myts = data.result
myts.head()

先将时间序列数据图片展示

def draw_ts(timeseries):
    f = plt.figure(facecolor='white')
    timeseries.plot(figsize=(12,8),color='blue')
    plt.show()
draw_ts(myts)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值