利用感知机实现鸢尾花分类问题

本文介绍了如何使用感知机进行鸢尾花分类。首先解释了感知机的基本原理,包括其作为线性判别模型的角色和随机梯度下降算法的应用。接着,通过sklearn库展示了两种实现方法,一种是自编的随机梯度下降训练,另一种是利用sklearn的Perceptron类。实验使用了经典的鸢尾花数据集,以花瓣长度和宽度为特征,目标是区分山鸢尾和变色鸢尾。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 实验简介

什么是感知机?

感知机是一种二分类的线性判别模型。主要采用了分离超平面的概念,其学习策略是极小化误分点到超平面距离,使用的学习算法为随机梯度下降算法。

我们将采用sklearn包中提供的iris数据使用两种方法进行训练及分类。第一种是根据随机梯度下降法编写算法来训练数据,直到找到分离的超平面。第二种将采用sklearn包中的Perceptron(感知机)类实现。使用最经典的鸢尾花数据集: 鸢尾花数据集地址,鸢尾花的特征主要包括萼片长度、萼片宽度、花瓣长度和花瓣宽度,本次实验利用花瓣的长度和宽度来区分山鸢尾和变色鸢尾。

2. 实验原理

感知机的输入是实例的特征向量,输出是实例的类别,分别取值为1和-1。假设感知机的输入空间是X,输出空间是Y,则,由输入空间到输出空间的函数f(x)=sign(wx+b)称为感知机。其中w是权值向量,b是偏置,线性方程wx+b=0对应于特征空间中的一个超平面S,其中w是超平面的法向量,b是超平面的截距,这个超平面将特征空间划分为了两个部分,这两个部分的点分别是两类。
为了找到这个超平面,定义一个损失函数,并将损失函数最小化,将损失函数定义为误分类点到超平面的距离,误分类点xi到超平面S的距离是在这里插入图片描述,这样,所有误分类点到超平面的总距离是 将其定为感知机的损失函数。感知机的学习过程就是将损失函数最优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值