LeetCode # 64 最小路径和

本文介绍了一个动态规划问题的解决方法,即寻找一个m x n网格中从左上角到右下角路径上的数字总和最小的路径。通过更新矩阵中的值,确保每次选择向下或向右移动时都能得到当前点到达终点的最短路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

输入:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

解题思路: 采用动态规划,从矩阵的右下角开始,依次更新矩阵中的值,当前矩阵的值grid[i][j]代表从当前点到达右下角路径最小值,每次可以选择向下或者向右走,因此更新路径值时,选择两个方向上的最小值来更新。

class Solution {
    public int minPathSum(int[][] grid) {
        if(grid==null || grid.length==0){
            return 0;
        }
        int m = grid.length-1;
        int n = grid[0].length-1;
        for(int i = m;i >= 0;i--){
            for(int j = n;j >= 0;j--){
                if(i==m && j != n){
                    grid[i][j] = grid[i][j] + grid[i][j+1];
                }else if(i != m && j==n){
                    grid[i][j] = grid[i][j] + grid[i+1][j];
                }else if(i != m && j != n){
                    grid[i][j] = grid[i][j] + Math.min(grid[i][j+1],grid[i+1][j]);
                }
            }
        }
        return grid[0][0];
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值