稀疏矩阵压缩算法(三元组法)的java代码实现(稀疏矩阵压缩为三元组和三元组解析为稀疏矩阵)

本文介绍了一种将稀疏矩阵压缩为三元组并解析回稀疏矩阵的方法,通过实例展示了如何使用Java实现这一过程,适用于处理大规模稀疏数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实现代码如下

public class SparseArray {
	
	/**
	 * 测试
	 * @param args
	 */
	public static void main(String[] args) {
		//矩阵初始化
		int[][] array = new int[8][8];
		for(int i=0;i<array.length;i++) {
			for(int j=0;j<array[0].length;j++) {
				array[i][j]=0;
			}
		}
		//添加非0数据
		array[1][1] = 1;
		array[1][6] = 2;
		array[4][6] = 9;
		array[6][6] = 8;
		//稀疏矩阵输出
		System.out.println("稀疏矩阵:");
		for(int i=0;i<array.length;i++) {
			for(int j=0;j<array[0].length;j++) {
				System.out.print(" "+array[i][j]);
			}
			System.out.println();
		}
		System.out.println();
		
		//调用方法把稀疏矩阵组转为三元组
		int[][] cArray = CoverToSparseArray(array);
		//输出三元组
		System.out.println("转换后三元组:");
		for(int i=0;i<cArray.length;i++) {
			for(int j=0;j<cArray[0].length;j++) {
				System.out.print(" "+cArray[i][j]);
			}
			System.out.println();
		}
		System.out.println();
		
		//调用方法把三元组转为稀疏矩阵
		int[][] array0 =  CoverToArray(cArray);
		//三元组转换后的稀疏数组输出
				System.out.println("解析后的稀疏数组:");
				for(int i=0;i<array0.length;i++) {
					for(int j=0;j<array0[0].length;j++) {
						System.out.print(" "+array0[i][j]);
					}
					System.out.println();
				}
		
		
	}
	
	/**
	 * 稀疏数组压缩为三元组
	 * @param array 二维数组
	 * @return
	 */
	public static int[][] CoverToSparseArray(int[][] array){
		
		int count = 0;	//记录原数组有效数据个数
		int row = 1;	//记录稀疏数组行信息
		//获取稀疏数组有效数据
		for(int i=0;i<array.length;i++) {
			for(int j=0;j<array[i].length;j++) {
				if(array[i][j]!=0) {
					count++;
				}
			}
		}
		//创建三元组
		int[][] coverToSparseArray = new int[count+1][3];
		//将稀疏矩阵组行、列、有效数据个数记录在三元组第一行
		coverToSparseArray[0][0] = array.length;
		coverToSparseArray[0][1] = array[0].length;
		coverToSparseArray[0][2] = count;
		//将稀疏矩阵有效数据记录在稀疏数组
		for(int i=0;i<array.length;i++) {
			for(int j=0;j<array[i].length;j++) {
				if(array[i][j]!=0) {
					coverToSparseArray[row][0] = i;
					coverToSparseArray[row][1] = j;
					coverToSparseArray[row][2] = array[i][j];
					row++;
				}
			}
		}
		//返回三元组
		return coverToSparseArray;
		
	}
	
	/**
	 * 三元组解析为稀疏矩阵
	 * @param coverToSparseArray 三元组
	 * @return
	 */
	public static int[][] CoverToArray(int[][] coverToSparseArray){
		
		//根据三元组第一行数据创建稀疏矩阵
		int[][] array = new int[coverToSparseArray[0][0]][coverToSparseArray[0][1]];
		//初始化稀疏矩阵(填充0)
		for(int i=0;i<array.length;i++) {
			for(int j=0;j<array[0].length;j++) {
				array[i][j]=0;
			}
		}
		//将三元组有效数据写回稀疏矩阵
		for(int i=1;i<coverToSparseArray.length;i++) {
			array[coverToSparseArray[i][0]][coverToSparseArray[i][1]] = coverToSparseArray[i][2];
		}
		//返回稀疏矩阵
		return array;
		
	}
	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值