
OpenCV
fly_Xiaoma
技术分享,技术学习
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
(一)使用cv2和matplotlib显示一张图片
目录 1、cv2展示一张图片 2、保存图片 3、使用Matplotlib展示一张图片 1、cv2展示一张图片 代码如下: import cv2 as cv import numpy as np from matplotlib import pyplot as plt path="D:\\openCV\\opencv\\sources\\samples\\data\...原创 2019-01-18 12:54:35 · 4289 阅读 · 0 评论 -
(二)绘图函数
目录 1、画线 2、画矩形 3、画圆 4、画一个椭圆 5、在图片上添加文字 6、汇总图 1、画线 代码: import numpy as np import cv2 as cv #create a black image img=np.zeros((512,512,3),np.uint8) #draw a diagnoal blue line with thickness of...原创 2019-01-18 13:30:39 · 303 阅读 · 0 评论 -
(三)对图片中像素的操作
目录 1、获取指定位置的像素值 2、修改某一点的像素值 3、获取图像的属性 4、图像的ROI 5、取出图像某一通道的值 1、获取指定位置的像素值 代码: import numpy as np import cv2 as cv path="D:\\openCV\\opencv\\sources\\samples\\data\\lena.jpg" image=cv.imread...原创 2019-01-18 14:24:37 · 1686 阅读 · 0 评论 -
(四)图像的算术运算
目录 1、图像加法 2、图像混合 3.按位运算 图像的算术运算包括:加法、减法、位运算等 函数:cv2.add() cv2.addWeighted()等 1、图像加法 使用cv2.add()将两幅图像进行加法运算,也可以使用numpy,res=img1+img 注意: 两幅图像的大小必须一致 OpenCV中的加法与Numpy的加法有所不同。OpenCV的加法是一种饱和操作,Nu...原创 2019-01-18 15:31:45 · 2711 阅读 · 0 评论 -
(五)图像处理--颜色空间
目录 1、颜色空间转换 2、将图像转换到HSV空间,并设置HSV阈值范围 3、图像的放大和缩小 1、颜色空间转换 函数:cv2.cvtColor() , cv2.inRnage() 在OpenCV中有超过150种进行颜色空间转换的方法。但是我们常用的也就两种:BGR-->Gray和BGR-->HSV 函数:cv2.cvtColor(input_image,flag),其中...原创 2019-01-18 16:13:18 · 595 阅读 · 0 评论 -
(六)图像阈值
目录 1、简单阈值 2、自适应阈值 3、Otsu's(大津算法)二值化 目标: 简单阈值、自适应阈值,Otsu's二值化 cv2.threshold , cv2.adaptiveThreshold 1、简单阈值 当像素值高于阈值时,给这个像素赋予一个新值,如255(白色),否则赋予另外一个颜色(如黑色) 函数:cv2.threshold() 第一个参数是原图像(必须是灰度图);第二...原创 2019-01-18 22:10:08 · 983 阅读 · 0 评论 -
(七)图像平滑操作
目录 1、卷积 2、图像模糊 1)平均 2)高斯模糊 3) 中值滤波 4)双边滤波 1、卷积 与一维信号一样,也可以对2D图像实施低通滤波器(LPF),高通滤波器(HPF)等。LPF帮助我们去除噪音,模糊图像。HPF帮助我们找到图像的边界。 函数:cv2.filter2D() 思路:将一个5x5的卷积核放在像素A上,求与核对应的图像上25个像素的和,再取平均数,用这个平均...原创 2019-01-19 11:37:41 · 774 阅读 · 1 评论 -
(八)图像形态学转换
目标:不同的形态学操作,如腐蚀、膨胀、开运算、闭运算 函数:cv2.erode()、cv2.dilate()、cv2.morphologyEx() 原理:形态学操作是根据图像形状进行的简单操作。一般情况下对二值图像进行的操作。需要输入两个参数,一个是原始图像,第二个被称为结构化元素或核,它是用来决定操作的性质的。 1、腐蚀 这个操作会把前景物体的边界腐蚀掉(但是前景仍然是白色)。卷积核沿着...原创 2019-01-19 12:19:52 · 362 阅读 · 1 评论 -
(九)图像梯度与Canny边缘检测
目录 1、图像梯度 1)Sobel算子和Scharr算子 2)Laplacian算子 2.Canny边缘检测 1)噪声去除 2)计算图像梯度 3)非极大值抑制 4)滞后阈值 1、图像梯度 目标: 图像梯度,图像边界 函数:cv2.Sobel(),cv3.Schar(),cv2.Laplacian() 原理:梯度简单来说就是求导。OpenCV提供了三种不同的梯度滤波器或者说高...原创 2019-01-19 14:10:07 · 2016 阅读 · 0 评论