【AI+智造】基于Odoo18社区版的长距离大口径管道供水系统技术方案设计

作者:Odoo技术开发/资深信息化负责人
日期:2025年4月18日

以下是基于Odoo 18的长距离大口径管道供水系统技术方案设计,结合项目模块、维护模块、IoT模块及DTU数据采集,重点保障最后一个泵站液位不低于设定值的全链路开发方案。方案涵盖传感器数据采集、监控告警大屏、无人机巡检等核心功能,前后端开发内容分模块阐述。


一、系统架构设计

1. 技术栈选择
  • 前端:Odoo原生QWeb模板 + JavaScript(集成ECharts、Mapbox等可视化库)
  • 后端:Python 3.10 + Odoo 18 ORM + PostgreSQL 15(支持GIS扩展)
  • 硬件层:液位传感器(4-20mA模拟信号)、DTU(GPRS/NB-IoT)、无人机(大疆M300 RTK)
  • 通信协议:Modbus TCP/RTU(传感器)、MQTT(无人机实时数据)、REST API(第三方系统对接)
2. 模块化设计
  • 项目模块:管理泵站、管线拓扑、工程参数;
  • 存储管线模块:GIS地图集成、管线属性数据库;
  • 维护模块:工单管理、预防性维护计划;
  • IoT模块:传感器数据采集、告警规则引擎;
  • 无人机巡检模块:航线规划、AI图像分析(渗漏检测)。

二、核心功能开发

1. 液位监控与告警
后端逻辑
  1. 数据采集层

    • 传感器接入:通过odoo.addons.iot模块扩展DTU驱动,解析Modbus协议数据,实时写入iot.data模型。示例代码:
      class DtuDevice(models.Model):
          _inherit = 'iot.device'
          protocol = fields.Selection(selection_add=[('modbus', 'Modbus RTU')])
          
          def _parse_modbus_data(self, raw_data):
              # 解析4-20mA信号为液位值(假设量程0-10米)
              current = (raw_data - 4) / 16 * 10  
              return {'level': current}
      
    • 液位阈值管理:在project.task模型中新增字段min_level,关联泵站任务。
  2. 告警引擎

    • 使用odoo.fields.Datetime定时任务(ir.cron)每5秒扫描最新液位数据:
      def _check_pump_level(self):
          pumps = self.env['project.task'].search([('is_pump_station', '=', True)])
          for pump in pumps:
              latest_data = self.env['iot.data'].search(
                  [('device_id', '=', pump.dtu_device_id.id)], 
                  order='create_date desc', limit=1)
              if latest_data.level < pump.min_level:
                  self._trigger_alert(pump, latest_data.level)
      
    • 告警触发后生成维护工单(maintenance.request)并推送至监控大屏。
前端展示
  • 看板视图:自定义看板卡片显示实时液位与状态(正常/警告/紧急):
    <t t-name="pump_level_kanban">
      <div class="oe_kanban_card">
        <div t-attf-class="alert alert-#{record.level_alert.raw_value}">
          <h4 t-field="record.name"/>
          <span>当前液位: <t t-esc="record.latest_level"/></span>
        </div>
      </div>
    </t>
    
  • GIS集成:通过web_map模块展示管线拓扑,高亮告警泵站。
2. 无人机智能巡检
任务编排
  • 航线规划:在maintenance.equipment模型中扩展无人机设备属性(续航、相机类型),通过QWeb界面生成巡检路径(GeoJSON格式)。
  • AI图像分析:集成YOLOv5模型检测管线渗漏,结果写入maintenance.issue
    class DroneInspection(models.Model):
        _name = 'drone.inspection'
        
        def _analyze_leakage(self, image_path):
            # 调用Python AI服务(Flask API)
            result = requests.post('http://ai-service:5000/detect', files={'image': open(image_path, 'rb')}).json()
            if result['leakage']:
                self.env['maintenance.issue'].create({
                    'equipment_id': self.equipment_id.id,
                    'description': '无人机检测到管线渗漏',
                    'severity': 'critical'
                })
    
数据融合
  • 巡检结果与传感器告警联动:当液位异常时,自动调度无人机复检对应管段。

三、关键技术实现

1. DTU数据采集优化
  • 断线重连机制:在iot.device中增加心跳检测,使用APScheduler实现离线告警。
  • 数据压缩:对历史液位数据按小时聚合,减少数据库压力(使用pg_partman分区表)。
2. 监控大屏开发
  • 技术选型:利用Odoo的board模块整合多个视图,或嵌入Grafana(通过iframe)。
  • 实时推送:通过websocketodoo.addons.bus模块实现告警动态刷新。
3. 维护模块扩展
  • 预防性维护:基于液位传感器历史数据训练预测模型(ARIMA),提前生成维护计划:
    class PredictiveMaintenance(models.Model):
        _inherit = 'maintenance.request'
        
        def _predict_failure(self):
            # 使用Pandas分析液位波动趋势
            data = self.env['iot.data'].read_group([...], ['level'], ['create_date:hour'])
            model = ARIMA(data, order=(1,1,1)).fit()
            if model.forecast()[0] < self.min_level:
                self.schedule_date = datetime.now() + timedelta(days=2)
    

四、系统集成与部署

1. 微服务架构
  • 容器化部署:使用Docker Compose分离Odoo、PostgreSQL、Redis、AI服务,通过Kubernetes实现高可用。
  • 性能调优
    • 配置odoo.confworkers = (CPU核心数 * 2) + 1
    • 启用pgbouncer连接池减少数据库负载。
2. 安全设计
  • 数据加密:DTU通信使用TLS 1.3,数据库字段加密(odoo.fields.Encrypted)。
  • 权限控制:通过ir.rule限制不同角色访问权限(如巡检员仅可见所属区域)。

五、测试与验证

  1. 场景测试
    • 模拟液位骤降触发无人机巡检,验证工单生成与消息推送延迟(要求<3秒)。
  2. 压力测试
    • 使用Locust模拟1000个DTU并发上传,监测Odoo Worker内存泄漏(limit_memory_soft=2GB)。

总结

本方案通过Odoo 18的模块化扩展能力,深度融合IoT与无人机技术,构建了从数据采集到智能决策的闭环系统。开发重点在于:

  1. ORM深度定制:扩展iot.data模型支持多协议接入;
  2. 异步任务优化:利用Celery处理高并发传感器数据;
  3. AI集成:通过微服务架构实现算法与业务逻辑解耦。

实际部署时可参考Odoo社区版源码优化性能,并利用KubeSphere实现运维监控。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值