作者:Odoo技术开发/资深信息化负责人
日期:2025年4月18日
以下是基于Odoo 18的长距离大口径管道供水系统技术方案设计,结合项目模块、维护模块、IoT模块及DTU数据采集,重点保障最后一个泵站液位不低于设定值的全链路开发方案。方案涵盖传感器数据采集、监控告警大屏、无人机巡检等核心功能,前后端开发内容分模块阐述。
一、系统架构设计
1. 技术栈选择
- 前端:Odoo原生QWeb模板 + JavaScript(集成ECharts、Mapbox等可视化库)
- 后端:Python 3.10 + Odoo 18 ORM + PostgreSQL 15(支持GIS扩展)
- 硬件层:液位传感器(4-20mA模拟信号)、DTU(GPRS/NB-IoT)、无人机(大疆M300 RTK)
- 通信协议:Modbus TCP/RTU(传感器)、MQTT(无人机实时数据)、REST API(第三方系统对接)
2. 模块化设计
- 项目模块:管理泵站、管线拓扑、工程参数;
- 存储管线模块:GIS地图集成、管线属性数据库;
- 维护模块:工单管理、预防性维护计划;
- IoT模块:传感器数据采集、告警规则引擎;
- 无人机巡检模块:航线规划、AI图像分析(渗漏检测)。
二、核心功能开发
1. 液位监控与告警
后端逻辑
-
数据采集层
- 传感器接入:通过
odoo.addons.iot
模块扩展DTU驱动,解析Modbus协议数据,实时写入iot.data
模型。示例代码:class DtuDevice(models.Model): _inherit = 'iot.device' protocol = fields.Selection(selection_add=[('modbus', 'Modbus RTU')]) def _parse_modbus_data(self, raw_data): # 解析4-20mA信号为液位值(假设量程0-10米) current = (raw_data - 4) / 16 * 10 return {'level': current}
- 液位阈值管理:在
project.task
模型中新增字段min_level
,关联泵站任务。
- 传感器接入:通过
-
告警引擎
- 使用
odoo.fields.Datetime
定时任务(ir.cron
)每5秒扫描最新液位数据:def _check_pump_level(self): pumps = self.env['project.task'].search([('is_pump_station', '=', True)]) for pump in pumps: latest_data = self.env['iot.data'].search( [('device_id', '=', pump.dtu_device_id.id)], order='create_date desc', limit=1) if latest_data.level < pump.min_level: self._trigger_alert(pump, latest_data.level)
- 告警触发后生成维护工单(
maintenance.request
)并推送至监控大屏。
- 使用
前端展示
- 看板视图:自定义看板卡片显示实时液位与状态(正常/警告/紧急):
<t t-name="pump_level_kanban"> <div class="oe_kanban_card"> <div t-attf-class="alert alert-#{record.level_alert.raw_value}"> <h4 t-field="record.name"/> <span>当前液位: <t t-esc="record.latest_level"/> 米</span> </div> </div> </t>
- GIS集成:通过
web_map
模块展示管线拓扑,高亮告警泵站。
2. 无人机智能巡检
任务编排
- 航线规划:在
maintenance.equipment
模型中扩展无人机设备属性(续航、相机类型),通过QWeb界面生成巡检路径(GeoJSON格式)。 - AI图像分析:集成YOLOv5模型检测管线渗漏,结果写入
maintenance.issue
:class DroneInspection(models.Model): _name = 'drone.inspection' def _analyze_leakage(self, image_path): # 调用Python AI服务(Flask API) result = requests.post('http://ai-service:5000/detect', files={'image': open(image_path, 'rb')}).json() if result['leakage']: self.env['maintenance.issue'].create({ 'equipment_id': self.equipment_id.id, 'description': '无人机检测到管线渗漏', 'severity': 'critical' })
数据融合
- 巡检结果与传感器告警联动:当液位异常时,自动调度无人机复检对应管段。
三、关键技术实现
1. DTU数据采集优化
- 断线重连机制:在
iot.device
中增加心跳检测,使用APScheduler
实现离线告警。 - 数据压缩:对历史液位数据按小时聚合,减少数据库压力(使用
pg_partman
分区表)。
2. 监控大屏开发
- 技术选型:利用Odoo的
board
模块整合多个视图,或嵌入Grafana(通过iframe
)。 - 实时推送:通过
websocket
与odoo.addons.bus
模块实现告警动态刷新。
3. 维护模块扩展
- 预防性维护:基于液位传感器历史数据训练预测模型(ARIMA),提前生成维护计划:
class PredictiveMaintenance(models.Model): _inherit = 'maintenance.request' def _predict_failure(self): # 使用Pandas分析液位波动趋势 data = self.env['iot.data'].read_group([...], ['level'], ['create_date:hour']) model = ARIMA(data, order=(1,1,1)).fit() if model.forecast()[0] < self.min_level: self.schedule_date = datetime.now() + timedelta(days=2)
四、系统集成与部署
1. 微服务架构
- 容器化部署:使用Docker Compose分离Odoo、PostgreSQL、Redis、AI服务,通过Kubernetes实现高可用。
- 性能调优:
- 配置
odoo.conf
的workers = (CPU核心数 * 2) + 1
; - 启用
pgbouncer
连接池减少数据库负载。
- 配置
2. 安全设计
- 数据加密:DTU通信使用TLS 1.3,数据库字段加密(
odoo.fields.Encrypted
)。 - 权限控制:通过
ir.rule
限制不同角色访问权限(如巡检员仅可见所属区域)。
五、测试与验证
- 场景测试
- 模拟液位骤降触发无人机巡检,验证工单生成与消息推送延迟(要求<3秒)。
- 压力测试
- 使用Locust模拟1000个DTU并发上传,监测Odoo Worker内存泄漏(
limit_memory_soft=2GB
)。
- 使用Locust模拟1000个DTU并发上传,监测Odoo Worker内存泄漏(
总结
本方案通过Odoo 18的模块化扩展能力,深度融合IoT与无人机技术,构建了从数据采集到智能决策的闭环系统。开发重点在于:
- ORM深度定制:扩展
iot.data
模型支持多协议接入; - 异步任务优化:利用Celery处理高并发传感器数据;
- AI集成:通过微服务架构实现算法与业务逻辑解耦。
实际部署时可参考Odoo社区版源码优化性能,并利用KubeSphere实现运维监控。