fp16和fp32

本文探讨了FP16(半精度浮点数)与FP32(单精度浮点数)在深度学习模型训练中的应用。使用FP16可以显著提高GPU运算速度和减少显存占用,但可能导致数值溢出。为解决此问题,引入了混合精度训练,通过Loss Scaling技术平衡数值范围,实现高效稳定的模型训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

float : 1个符号位、8个指数位和23个尾数位

 

利用fp16 代替 fp32

优点:

1)TensorRT的FP16与FP32相比能有接近一倍的速度提升168,前提是GPU支持FP16(如最新的2070,2080,2080ti等)

2)减少显存。

 

缺点:

1) 会造成溢出

 

因此,在日常使用过程中,常使用双混合精度训练。如图:

此过程中的技术:

1) Loss scaling  :会存在很多梯度在FP16表达范围外,我们为了让其落入半精度范围内,会给其进行等比放大后缩小。

流程:

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值