机器学习100天(3)

# Importing the libraries
import pandas as pd
import numpy as np

# Importing the dataset
dataset = pd.read_csv('../datasets/50_Startups.csv')
# 取数据的所有行,前4列为x
X = dataset.iloc[:, :4].values
# 取所有行,第五列为y
Y = dataset.iloc[:,  4].values

# Encoding Categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder = LabelEncoder()
X[: , 3] = labelencoder.fit_transform(X[:, 3])
onehotencoder = OneHotEncoder(categorical_features=[3])
X = onehotencoder.fit_transform(X).toarray()

# Avoiding Dummy Variable Trap
X = X[: , 1:]

# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0)

# Fitting Multiple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, Y_train)

# Predicting the Test set results
y_pred = regressor.predict(X_test)

# regression evaluation
from sklearn.metrics import r2_score
print(r2_score(Y_test, y_pred))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值