1102 Path With Maximum Minimum Value

本文探讨了寻找矩阵中从左上角到右下角的最大成本路径问题,介绍了两种算法实现:一种基于Dijkstra算法的改进版,通过优先队列记录待访问节点;另一种使用UnionFind算法,按值排序并逐步合并相邻节点,直至起始点与终点相连。两方法均旨在找到路径上的最小值最大化的路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 题目

Given a matrix of integers A with R rows and C columns, find the maximum score of a path starting at [0,0] and ending at [R-1,C-1].

The score of a path is the minimum value in that path.  For example, the value of the path 8 →  4 →  5 →  9 is 4.

path moves some number of times from one visited cell to any neighbouring unvisited cell in one of the 4 cardinal directions (north, east, west, south).

Example 1:

Input: [[5,4,5],[1,2,6],[7,4,6]]
Output: 4
Explanation: 
The path with the maximum score is highlighted in yellow. 

Example 2:

 

Input: [[2,2,1,2,2,2],[1,2,2,2,1,2]]
Output: 2

 Example 3:

Input: [[3,4,6,3,4],[0,2,1,1,7],[8,8,3,2,7],[3,2,4,9,8],[4,1,2,0,0],[4,6,5,4,3]]
Output: 3

 2 尝试解

2.1 分析

从左上角到右下角的任意路径,用该路径上所有元素的最小值作为该路径的成本,求最大成本路径。

用类似Dijstra算法,从起点出发,将当前所有已到达位置的可达且未访问过的位置统一加入堆中,每次取出堆顶元素作为下一个要访问的位置。直到终点被访问到停止算法。

2.2 代码

class Solution {
public:
    int maximumMinimumPath(vector<vector<int>>& A) {
        set<pair<int,int>> visited;
        priority_queue<pair<int,pair<int,int>>> candidates;
        candidates.push(make_pair(A[0][0],make_pair(0,0)));
        int result = INT_MAX;
        while(visited.count(make_pair(A.size()-1,A[0].size()-1))==0){
            result = min(candidates.top().first,result);
            auto coor = candidates.top().second;
            candidates.pop();
            visited.insert(coor);
            vector<pair<int,int>> neighbor{{coor.first-1,coor.second},{coor.first+1,coor.second},{coor.first,coor.second-1},{coor.first,coor.second+1}};
            for(auto n:neighbor){
                if(visited.count(n) == 0 &&n.first >= 0 && n.first<A.size()&&n.second>=0 && n.second < A[0].size()){
                    candidates.push(make_pair(A[n.first][n.second],n));
                }
            }
        }
        return result;
    }
};

3 标准解

3.1 分析

用UnionFind算法,将所有位置按照值排序,每次访问堆顶元素,如果该位置的四连通邻居已经被访问过,则将二者合并,直到起止点相连。

3.2 代码

class Solution {
public:
    int maximumMinimumPath(vector<vector<int>>& A) {
        const int M = A.size();
        const int N = A[0].size();
        const int X = M * N;
        parent = vector<int>(X, 0);
        for (int i = 0; i < parent.size(); ++i)
            parent[i] = i;
        vector<vector<int>> values;
        for (int i = 0; i < M; ++i) {
            for (int j = 0; j < N; ++j) {
                values.push_back({A[i][j], i, j});
            }
        }
        sort(values.begin(), values.end(), [](vector<int>& a, vector<int>& b) {return a[0] < b[0];});
        unordered_set<int> visited;
        visited.insert(0);
        visited.insert(X - 1);
        int res = min(A[0][0], A[M - 1][N - 1]);
        while(find(0) != find(X - 1)) {
            vector<int> cur = values.back(); values.pop_back();
            visited.insert(cur[1] * N + cur[2]);
            res = min(res, cur[0]);
            for (auto& dir : dirs) {
                int newx = cur[1] + dir[0];
                int newy = cur[2] + dir[1];
                if (newx >= 0 && newx < M && newy >= 0 && newy < N && visited.count(newx * N + newy)) {
                    uni(cur[1] * N + cur[2], newx * N + newy);
                }
            }
        }
        return res;
    }
    int find(int a) {
        if (parent[a] == a)
            return a;
        return find(parent[a]);
    }
    void uni(int a, int b) {
        int pa = find(a);
        int pb = find(b);
        if (pa == pb)
            return;
        parent[pa] = pb;
    }
private:
    vector<int> parent;
    vector<vector<int>> dirs = {{0, 1}, {0, -1}, {-1, 0}, {1, 0}};
};

 

import os import pandas as pd import SimpleITK as sitk from radiomics import featureextractor 输入文件路径(替换为实际文件) CT_PATH = r"F:\data_shuqi\ct\001.nii.gz" # CT图像路径 SEG_PATH = r"F:\data_shuqi\seg\001(1).nii.gz" # 分割掩码路径 OUTPUT_CSV = r"C:\Users\lenovo\doc\re.csv" # 输出文件路径 PARAMS_PATH = None def define_extractor(): settings = {} settings[‘binWidth’] = 25 # 5 settings[‘sigma’] = [3, 5] # 2 loG filters settings[‘Interpolator’] = sitk.sitkBSpline settings[‘resampledPixelSpacing’] = [1, 1, 1] # 3,3,3 settings[‘voxelArrayShift’] = 1000 # 300 settings[‘normalize’] = True settings[‘normalizeScale’] = 100 extractor = featureextractor.RadiomicsFeatureExtractor(**settings) # extractor = featureextractor.RadiomicsFeatureExtractor() print(‘Extraction parameters:\n\t’, extractor.settings) extractor.enableImageTypeByName('LoG') extractor.enableImageTypeByName('Wavelet') # 8 FILTERS extractor.enableAllFeatures() extractor.enableFeaturesByName( firstorder=['Energy', 'TotalEnergy', 'Entropy', 'Minimum', '10Percentile', '90Percentile', 'Maximum', 'Mean', 'Median', 'InterquartileRange', 'Range', 'MeanAbsoluteDeviation', 'RobustMeanAbsoluteDeviation', 'RootMeanSquared', 'StandardDeviation', 'Skewness', 'Kurtosis', 'Variance', 'Uniformity']) extractor.enableFeaturesByName( shape=['VoxelVolume', 'MeshVolume', 'SurfaceArea', 'SurfaceVolumeRatio', 'Compactness1', 'Compactness2', 'Sphericity', 'SphericalDisproportion', 'Maximum3DDiameter', 'Maximum2DDiameterSlice', 'Maximum2DDiameterColumn', 'Maximum2DDiameterRow', 'MajorAxisLength', 'MinorAxisLength', 'LeastAxisLength', 'Elongation', 'Flatness']) print('Enabled filters:\n\t', extractor.enabledImagetypes) return extractor ===== 新增:保存为CSV的代码 ===== 1. 准备保存路径 output_dir =OUTPUT_CSV os.makedirs(output_dir, exist_ok=True) # 确保目录存在 csv_path = os.path.join(output_dir, “features2.csv”) 2. 过滤并整理特征数据 features_dict = {} for key, value in result.items(): # 跳过配置参数和非特征项 if not key.startswith(‘config’) and not key.startswith(‘general’): # 将numpy类型转换为Python原生类型 if hasattr(value, ‘item’): # 处理numpy标量 value = value.item() features_dict[key] = value 3. 创建DataFrame并保存 使用字典创建单行DataFrame df = pd.DataFrame([features_dict]) 保存到CSV(处理不同保存模式) if not os.path.exists(csv_path): # 首次创建文件时写入表头 df.to_csv(csv_path, index=False, float_format=‘%.4f’) print(f"创建新CSV文件: {csv_path}“) else: # 追加模式(不写入表头) df.to_csv(csv_path, mode=‘a’, header=False, index=False, float_format=‘%.4f’) print(f"追加到现有CSV文件: {csv_path}”) print(f"成功保存 {len(features_dict)} 个特征到CSV") 整合上面和下面的代码,我要进行影像组学特征提取 result = define_extractor.extractor.execute(CT_PATH,SEG_PATH,PARAMS_PATH)
最新发布
07-16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值