验证时,所有的特征值经过模型后全为nan;特征值进入Lin全连接后,全部变为nan

在模型验证阶段,输入特征值通过网络后变成nan,且仅在全数据集上出现此问题。排查发现,部分权重和梯度值为nan或0。解决方法包括检查损失函数的一致性和线性可导性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前几天训练模型的时候,遇到了一个问题,就是特征值输入模型之前好好的,但是经过我的网络之后,输出的embedding全变成了nan。
最让人无语的是,这是发生在验证阶段,而不是训练阶段!如果是验证阶段,就可以考虑一下是不是梯度爆炸的问题。但是发生在验证阶段,就很离谱了!
而且,使用小部分测试数据的时候,模型居然一点问题都没有,当使用全部数据的时候,就不行了!当然,我尝试找数据集的问题,对数据集进行随机抽样,输进去其他不管是有规律还是没规律的测试数据集,都不好使,只要是准备真刀真枪的训练模型看效果了,哎,不好使!要测试模型能不能跑通的话,哎,好使!
这个时候,就应该找找问题了,首先我是看了val部分的权重和梯度值,也就是用下面的代码

for name, parms in model.named_parameters():	
		print(name
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这个人很懒,还没有设置昵称...

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值