激活函数总结

本文深入探讨了常见的激活函数,包括sigmoid、tanh和ReLU的特点及应用。解析了它们的数学表达式,导数公式,以及在神经网络中的作用,如sigmoid函数的映射区间,tanh函数的对称性,ReLU函数的神经元激活特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. sigmoid函数,tf.nn.sigmoid, 1 / (1 + exp(-x))
    在这里插入图片描述

    a = tf.constant([1.1, 2.1,3.1 ,4.1])
    tf.nn.sigmoid(a) #[0.7502601, 0.8909032, 0.9568927, 0.9836975]
    
    1. 导数:S(x)’ = S(x) * (1 - S(x))
    2. 映射区间0~1, 对称, 单调
  2. tanh函数,tf.nn.tanh
    在这里插入图片描述

    b = tf.nn.tanh(a) # [0.8004991, 0.970452 , 0.9959493, 0.9994508]
    
    1. 导数:tanh(x)’ = 1 - tanh(x) ^ 2
  3. relu函数 tf.nn.relu
    在这里插入图片描述

    tf.nn.relu(a)
    
    1. 模仿神经元的行为,达到一定阈值神经元才会被激活,筛选出相关的神经元
  4. softsign

    tf.nn.softsigh(input)
    
    1. f(x) = x / (1+|x|)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值