Python之技巧

博客介绍了Python中对可迭代对象的几种操作方法。map可对单个或多个可迭代对象并行运算并返回新对象,还能批量提取字符串并转换类型;reduce可对可迭代对象进行累计操作;filter能筛选出满足条件的数值;pool.map with partial可在pool.map中传入其他参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.map

  • map
    需求:对单个或多个可迭代对象并行运算,返回一个新的可迭代对象
for i in map(lambda x,y:x+y, [1,2,3,4,5],[1,2,3,4,5]): #对单个或多个可迭代对象并行运算,返回一个新的可迭代对象
    print(i,end=' ')
list(map(lambda x,y:x+y, [1,2,3,4,5],[1,2,3,4,5]))

在这里插入图片描述
需求:批量提取字符串并转换类型

a,b,c = map(int,"2020-11-26".split('-')) #批量提取字符串并转换类型
print(a,b,c)

在这里插入图片描述

2. reduce

需求:对可迭代对象,进行累计操作,比如累加

from functools import reduce
reduce(lambda x,y:x+y,[1,2,3,4,5]) #对可迭代对象,进行累计操作,比如累加

在这里插入图片描述

3. filter

需求:筛选出可迭代对象中满足条件的数值

list(filter(lambda x:x % 2 == 0,[1,2,3,4,5])) #筛选出可迭代对象中满足条件的数值

在这里插入图片描述

4. pool.map with partial

需求:pool.map中传入 除可迭代对象外的 其他参数。

# -*- coding: utf-8 -*-
from multiprocessing import Pool
from functools import partial # 导入偏函数
import numpy as np


def adjust(mean, number):
   print("mean: %f number: %.2f" % (mean, number))
   return abs(float("%.2f" % (mean - number)))


if __name__ == "__main__":
   num_list = [12, 45, 67, 88, 99, 62]
   num_mean = np.average(num_list)  # 计算均值
   pool = Pool(4)  # 定义进程池

   p_func = partial(adjust, num_mean)  # 定义偏函数,并传入均值
   res_list = pool.map(p_func, num_list) # 执行map,传入列表
   print(res_list)

结果:

(base) D:\Pycharm Pro\senseTimePro>python hkjhk.py
mean: 62.166667 number: 12.00
mean: 62.166667 number: 45.00
mean: 62.166667 number: 67.00
mean: 62.166667 number: 88.00
mean: 62.166667 number: 99.00
mean: 62.166667 number: 62.00
[50.17, 17.17, 4.83, 25.83, 36.83, 0.17]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值