文章目录
线性常系数奇次递推关系
一 定义
-
两个常见的递推关系:
Fibonacci: F n − F n − 1 − F n − 2 = 0 F_n-F_{n-1}-F_{n-2}=0 Fn−Fn−1−Fn−2=0
Hanoi: h n − 3 h n − 1 + 2 h n − 2 = 0 h_n-3h_{n-1}+2h_{n-2}=0 hn−3hn−1+2hn−2=0 -
总结特点:
线性累加和
右端项为0
系数是常数 -
定义
如果序列满足:
a n + c 1 a n − 1 + c 2 a n − 2 + ⋯ + c k a n − k = 0 a_n+c_1a_{n-1}+c_2a_{n-2}+\dots+c_ka_{n-k}=0 an+c1an−1+c2an−2+⋯+ckan−k=0
a 0 = d 0 , a 1 = d 1 , … , a k − 1 = d k − 1 a_0=d_0,a_1=d_1,\dots,a_{k-1}=d_{k-1} a0=d0,a1=d1,…,ak−1=dk−1
c 0 , c 1 … , c k c_0,c_1\dots,c_k c0,c1…,ck及 d 0 , d 1 , … , d k − 1 d_0,d_1,\dots,d_{k-1} d0,d1,…,dk−1是常数, c k ≠ 0 c_k\ne0 ck=0,则上式为{ a n a_n an}的 k k k阶线性常系数奇次递推关系。
二 特征多项式
1.常见数列的特征多项式
- 因式定理:
若 α \alpha α是一元多项式 f ( x ) f(x) f(x)的根,即 f ( α ) = 0 f(\alpha)=0 f(α)=0成立,则多项式 f ( x ) f(x) f(x)有一个因式 x − α x-\alpha x−α。
因为泰勒展开为 ( 1 − α x ) − 1 = 1 + α x + α 2 x 2 + ⋯ (1-\alpha x)^{-1}=1+\alpha x+{\alpha}^2 x^2+\cdots (1−αx)−1=1+αx+α2x2+⋯
所以我们需要得到 1 − α x 1-\alpha x 1−αx
若 α \alpha α是一元多项式 f ( x − 1 ) f(x^{-1}) f(x−1)的根,即 f ( α ) = 0 f(\alpha)=0 f(α)=0成立,则多项式 f ( x − 1 ) f(x^{-1}) f(x−1)有一个因式 x − 1 − α = ( 1 − α x ) / x x^{-1}-\alpha=(1-\alpha x)/x x−1−α=(1−αx)/x。、
思想如下图:Fibonacci数列
观察:
C ( m ) = m 2 − m − 1 = ( m − α ) ( m − β ) C(m)=m^2-m-1=(m-\alpha)(m-\beta) C(m)=m2−m−1=(m−α)(m−β)
递推公式: F n − F n − 1 − F n − 2 = 0 F_n-F_{n-1}-F_{n-2}=0 F