组合数学9-线性常系数奇次递推关系

本文深入探讨了线性常系数奇次递推关系,包括定义、特征多项式及其各种情况下的推导与应用。通过解析常见数列如Fibonacci和Hanoi的递推关系,阐述了特征多项式的概念,并详细介绍了特征多项式无重根、有重根和有共轭复根时的解法,为理解和解决此类递推问题提供了清晰的路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性常系数奇次递推关系

一 定义

  • 两个常见的递推关系:
    Fibonacci: F n − F n − 1 − F n − 2 = 0 F_n-F_{n-1}-F_{n-2}=0 FnFn1Fn2=0
    Hanoi: h n − 3 h n − 1 + 2 h n − 2 = 0 h_n-3h_{n-1}+2h_{n-2}=0 hn3hn1+2hn2=0

  • 总结特点:
    线性累加和
    右端项为0
    系数是常数

  • 定义
    如果序列满足:
    a n + c 1 a n − 1 + c 2 a n − 2 + ⋯ + c k a n − k = 0 a_n+c_1a_{n-1}+c_2a_{n-2}+\dots+c_ka_{n-k}=0 an+c1an1+c2an2++ckank=0
    a 0 = d 0 , a 1 = d 1 , … , a k − 1 = d k − 1 a_0=d_0,a_1=d_1,\dots,a_{k-1}=d_{k-1} a0=d0,a1=d1,,ak1=dk1
    c 0 , c 1 … , c k c_0,c_1\dots,c_k c0,c1,ck d 0 , d 1 , … , d k − 1 d_0,d_1,\dots,d_{k-1} d0,d1,,dk1常数 c k ≠ 0 c_k\ne0 ck=0,则上式为{ a n a_n an}的 k k k线性常系数奇次递推关系。

二 特征多项式

1.常见数列的特征多项式

  • 因式定理:
    α \alpha α是一元多项式 f ( x ) f(x) f(x)的根,即 f ( α ) = 0 f(\alpha)=0 f(α)=0成立,则多项式 f ( x ) f(x) f(x)有一个因式 x − α x-\alpha xα
    因为泰勒展开为 ( 1 − α x ) − 1 = 1 + α x + α 2 x 2 + ⋯ (1-\alpha x)^{-1}=1+\alpha x+{\alpha}^2 x^2+\cdots (1αx)1=1+αx+α2x2+
    所以我们需要得到 1 − α x 1-\alpha x 1αx
    α \alpha α是一元多项式 f ( x − 1 ) f(x^{-1}) f(x1)的根,即 f ( α ) = 0 f(\alpha)=0 f(α)=0成立,则多项式 f ( x − 1 ) f(x^{-1}) f(x1)有一个因式 x − 1 − α = ( 1 − α x ) / x x^{-1}-\alpha=(1-\alpha x)/x x1α=(1αx)/x。、
    思想如下图:
    Smiley face
    Fibonacci数列

    观察:
    C ( m ) = m 2 − m − 1 = ( m − α ) ( m − β ) C(m)=m^2-m-1=(m-\alpha)(m-\beta) C(m)=m2m1=(mα)(mβ)
    递推公式: F n − F n − 1 − F n − 2 = 0 F_n-F_{n-1}-F_{n-2}=0 F
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值